Suppose T(n) and f(n) and two functions. Write asymptotic notations (Ο, Ω, Θ) using these two functions and explain the growth rate of these functions in each notation.
"f(n)=O(T(n))" if there exists a positive real number M and a real number n0 such that
"f(n)\\le MT(n)" for all "n\\ge n_0"
"f(n)=\\Omega(T(n))" if there exists a positive real number M and a real number n0 such that
"f(n)\\ge MT(n)" for all "n\\ge n_0"
"f(n)=\\theta(T(n))" if there exists a positive real numbers M1, M2 and a real number n0 such that
"M_1T(n)\\le f(n)\\le M_2T(n)" for all "n\\ge n_0"
Comments
Leave a comment