Let D = {-5, -3, -1, 1, 3, 5}. Write the following statements using only negations, conjunctions and
disjunctions:
a) βπ₯π(π₯)
b) βπ₯π(π₯)
c) βπ₯((π₯ β 1) β π(π₯))
d) βπ₯((π₯ β₯ 0) β§ π(π₯))
e) βπ₯(οΏ’π(π₯)) β§ βπ₯((π₯ < 0) β π(π₯))
a)Β "\u2203xP(x)=P(-5)\\lor P(-3)\\lor P(-1)\\lor P(1)\\lor P(3)\\lor P(5)"
b)Β "\u2200xP(x)=P(-5)\\land P(-3)\\land P(-1)\\land P(1)\\land P(3)\\land P(5)"
c)
"\u2200\ud835\udc65((\ud835\udc65 \u2260 1) \u2192 \ud835\udc43(\ud835\udc65))=\u2200\ud835\udc65(\\neg(x\\neq 1)\\lor P(x))=(x=1)\\lor P(1)"
d)
"\u2203\ud835\udc65((\ud835\udc65 \u2265 0) \u2227 \ud835\udc43(\ud835\udc65))=((x=1)\\land P(1))\\lor ((x=)\\land P(3))\\lor ((x=5)\\land P(5))"
e)
"\u2203\ud835\udc65(\uffe2\ud835\udc43(\ud835\udc65)) \u2227 \u2200\ud835\udc65((\ud835\udc65 < 0) \u2192 \ud835\udc43(\ud835\udc65)) =\u2203\ud835\udc65(\uffe2\ud835\udc43(\ud835\udc65)) \u2227 \u2200\ud835\udc65(\\neg(\ud835\udc65 < 0) \\lor \ud835\udc43(\ud835\udc65))="
"=\u2203\ud835\udc65(\uffe2\ud835\udc43(\ud835\udc65)) \u2227 \u2200\ud835\udc65((\ud835\udc65 > 0) \\lor \ud835\udc43(\ud835\udc65))="
"=\u2203\ud835\udc65(\uffe2\ud835\udc43(\ud835\udc65)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(1))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))="
"=(\uffe2\ud835\udc43(-5)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(1))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))\\lor"
"\\lor (\uffe2\ud835\udc43(-3)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(\ud835\udc65))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))\\lor"
"\\lor (\uffe2\ud835\udc43(-1)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(\ud835\udc65))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))\\lor"
"\\lor (\uffe2\ud835\udc43(1)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(\ud835\udc65))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))\\lor"
"\\lor (\uffe2\ud835\udc43(3)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(\ud835\udc65))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))\\lor"
"\\lor (\uffe2\ud835\udc43(5)) \u2227 (((\ud835\udc65 =1) \\lor \ud835\udc43(\ud835\udc65))\\land ((\ud835\udc65 =3) \\lor \ud835\udc43(3))\\land ((\ud835\udc65 =5) \\lor \ud835\udc43(5)))"
Comments
Leave a comment