Find a recurrence relation, with initial condition, that uniquely determines each of the following geometric progressions.
a) 2, 10, 50, 250, . . .
b) 7, 14/5, 28/25, 56/125, . . .
Given Geometric progression;
a) 2,10,50,250,
Rewrite as,
"\\begin{aligned}\n\n&a_{0}=2 \\\\\n\n&a_{1}=10 \\\\\n\n&a_{2}=50 \\\\\n\n&a_{3}=250\n\n\\end{aligned}"
Now change each term of sequence in terms of a_{0};
"\\begin{aligned}\n\n\\text { since } a_{1} &=10=5 \\times 2 \\\\\n\n& \\Rightarrow a_{1}=5 a_{0} \\\\\n\na_{2}=50 &=25 \\times 2=25 a_{0} \\\\\n\n& \\Rightarrow a_{2}=(5)^{2} a_{0} \\\\\n\n a_{3}=250 &=125 \\times 2 \\\\\n\n&=(5)^{3} a_{0}\n\n\\end{aligned}"
Therefore, the recurrence relation is given by
"a_{n}=(5)^{n} a_{0} \\quad \\forall n \\geqslant 1"
with Initial Condition "a_{0}=2"
b)
"\\begin{array}{ll}7, 14 \/ 5,28 \/ 25,56 \/ 125, \\ldots \\\\ a_{0}=7, a_{1}=14\/5, a_{2}=28\/25, a_{3}=56\/125\\end{array}"
Now,
"\\begin{aligned}\n\na_{1}=\\frac{14}{5} &=\\frac{2 \\times 7}{5} \\\\\n\n\\Rightarrow a_{1} &=\\frac{2}{5} a_{0}\n\n\\end{aligned}"
"\\begin{aligned}\n\na_{2}=\\frac{28}{25} &=\\frac{4}{25} \\times 7=\\left(\\frac{2}{5}\\right)^{2} \\times 7 \\\\\n\n& \\Rightarrow a_{2}=\\left(\\frac{2}{5}\\right)^{2} a_{0} \\mid\n\n\\end{aligned}"
"\\begin{aligned}\n\na_{3}=\\frac{56}{125} &=\\frac{8 \\times 7}{125}=\\left(\\frac{2}{5}\\right)^{3} \\times 7 \\\\\n\n& \\Rightarrow a_{3}=\\left(\\frac{2}{5}\\right)^{3} a_{0}\n\n\\end{aligned}"
Therefore Recurrence relation is given by;
"\\ a_{n}=\\underbrace{\\left(\\frac{2}{5}\\right)^{n} a_{0} \\quad \\forall n \\geqslant 1}_{\\text {with } a_{0}=7}"
OR
"a_{n}=\\frac{2}{5} a_{n-1}"
Comments
Leave a comment