Given Geometric progression;
a) 2,10,50,250,
Rewrite as,
a0=2a1=10a2=50a3=250
Now change each term of sequence in terms of a_{0};
since a1a2=50a3=250=10=5×2⇒a1=5a0=25×2=25a0⇒a2=(5)2a0=125×2=(5)3a0
Therefore, the recurrence relation is given by
an=(5)na0∀n⩾1
with Initial Condition a0=2
b)
7,14/5,28/25,56/125,…a0=7,a1=14/5,a2=28/25,a3=56/125
Now,
a1=514⇒a1=52×7=52a0
a2=2528=254×7=(52)2×7⇒a2=(52)2a0∣
a3=12556=1258×7=(52)3×7⇒a3=(52)3a0
Therefore Recurrence relation is given by;
an=with a0=7(52)na0∀n⩾1
OR
an=52an−1
Comments
Leave a comment