Answer to Question #267472 in Discrete Mathematics for XUXUXU

Question #267472

Find a recurrence relation, with initial condition, that uniquely determines each of the following geometric progressions.

a)        2, 10, 50, 250, . . .


                

b)        7, 14/5, 28/25, 56/125, . . .

 


1
Expert's answer
2021-11-18T07:00:37-0500

 Given Geometric progression;

a) 2,10,50,250,

Rewrite as,

a0=2a1=10a2=50a3=250\begin{aligned} &a_{0}=2 \\ &a_{1}=10 \\ &a_{2}=50 \\ &a_{3}=250 \end{aligned}

 Now change each term of sequence in terms of a_{0};

  since a1=10=5×2a1=5a0a2=50=25×2=25a0a2=(5)2a0a3=250=125×2=(5)3a0\begin{aligned} \text { since } a_{1} &=10=5 \times 2 \\ & \Rightarrow a_{1}=5 a_{0} \\ a_{2}=50 &=25 \times 2=25 a_{0} \\ & \Rightarrow a_{2}=(5)^{2} a_{0} \\ a_{3}=250 &=125 \times 2 \\ &=(5)^{3} a_{0} \end{aligned}

Therefore, the recurrence relation is given by

an=(5)na0n1a_{n}=(5)^{n} a_{0} \quad \forall n \geqslant 1

with Initial Condition a0=2a_{0}=2


b)

7,14/5,28/25,56/125,a0=7,a1=14/5,a2=28/25,a3=56/125\begin{array}{ll}7, 14 / 5,28 / 25,56 / 125, \ldots \\ a_{0}=7, a_{1}=14/5, a_{2}=28/25, a_{3}=56/125\end{array}

Now,

a1=145=2×75a1=25a0\begin{aligned} a_{1}=\frac{14}{5} &=\frac{2 \times 7}{5} \\ \Rightarrow a_{1} &=\frac{2}{5} a_{0} \end{aligned}

 

 a2=2825=425×7=(25)2×7a2=(25)2a0\begin{aligned} a_{2}=\frac{28}{25} &=\frac{4}{25} \times 7=\left(\frac{2}{5}\right)^{2} \times 7 \\ & \Rightarrow a_{2}=\left(\frac{2}{5}\right)^{2} a_{0} \mid \end{aligned}

 

a3=56125=8×7125=(25)3×7a3=(25)3a0\begin{aligned} a_{3}=\frac{56}{125} &=\frac{8 \times 7}{125}=\left(\frac{2}{5}\right)^{3} \times 7 \\ & \Rightarrow a_{3}=\left(\frac{2}{5}\right)^{3} a_{0} \end{aligned}

 Therefore Recurrence relation is given by;

 an=(25)na0n1with a0=7\ a_{n}=\underbrace{\left(\frac{2}{5}\right)^{n} a_{0} \quad \forall n \geqslant 1}_{\text {with } a_{0}=7}

OR

an=25an1a_{n}=\frac{2}{5} a_{n-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment