Using the definition of "Big-O" determine if each of the following functions, f(x) = (xlogx)^2 - 4 and g(x) = 5x^5 are O(x^4) and prove your claims.
"f(x) = (xlogx)^2 - 4\\le (xlogx)^2 +4 (xlogx)^2 =5 (xlogx)^2 \\le5x^4"
"f(x)=O(x^4)"
"\\displaystyle{\\lim_{x\\to \\infin}}(g(x)\/x^4)=\\displaystyle{\\lim_{x\\to \\infin}}(5x^5\/x^4)=\\infin"
"g(x)\\neq O(x^4)"
Comments
Leave a comment