Solution:
A = {x |x and x4 − 4 =0} and B = {y | y and y4 − 16 =0 =0}
x 4 − 4 = 0 ⇒ x 4 = 4 ⇒ x 2 = ± 2 ⇒ x = ± ± 2 ⇒ x = 2 , − 2 , 2 i , − 2 i x^4 − 4 =0
\\ \Rightarrow x^4 =4
\\ \Rightarrow x^2=\pm2
\\ \Rightarrow x=\pm\sqrt{\pm2}
\\ \Rightarrow x=\sqrt{2},-\sqrt{2},\sqrt{2}i,-\sqrt{2}i x 4 − 4 = 0 ⇒ x 4 = 4 ⇒ x 2 = ± 2 ⇒ x = ± ± 2 ⇒ x = 2 , − 2 , 2 i , − 2 i
And,
y 4 − 16 = 0 ⇒ y 4 = 16 ⇒ y 2 = ± 4 ⇒ y = ± ± 4 ⇒ y = 2 , − 2 , 2 i , − 2 i y^4-16=0
\\\Rightarrow y^4=16
\\\Rightarrow y^2=\pm 4
\\\Rightarrow y=\pm \sqrt{\pm4}
\\\Rightarrow y=2, -2, 2i, -2i y 4 − 16 = 0 ⇒ y 4 = 16 ⇒ y 2 = ± 4 ⇒ y = ± ± 4 ⇒ y = 2 , − 2 , 2 i , − 2 i
So, A = { 2 , − 2 , 2 i , − 2 i } , B = { 2 , − 2 , 2 i , − 2 i } A=\{\sqrt{2},-\sqrt{2},\sqrt{2}i,-\sqrt{2}i \}, B=\{2,-2,2i,-2i\} A = { 2 , − 2 , 2 i , − 2 i } , B = { 2 , − 2 , 2 i , − 2 i }
None is the singleton set (having just one element).
∵ A ∩ B = ϕ \because A\cap B=\phi ∵ A ∩ B = ϕ
So, they are disjoint sets.
Comments