Find the singleton sets and the pair of disjoint sets from the following
1. A = {x |x and x4 − 4 =0} and B = {y | y and x4 − 16 =0 =0}.
Solution:
A = {x |x and x4 − 4 =0} and B = {y | y and y4 − 16 =0 =0}
x4−4=0⇒x4=4⇒x2=±2⇒x=±±2⇒x=2,−2,2i,−2ix^4 − 4 =0 \\ \Rightarrow x^4 =4 \\ \Rightarrow x^2=\pm2 \\ \Rightarrow x=\pm\sqrt{\pm2} \\ \Rightarrow x=\sqrt{2},-\sqrt{2},\sqrt{2}i,-\sqrt{2}ix4−4=0⇒x4=4⇒x2=±2⇒x=±±2⇒x=2,−2,2i,−2i
And,
y4−16=0⇒y4=16⇒y2=±4⇒y=±±4⇒y=2,−2,2i,−2iy^4-16=0 \\\Rightarrow y^4=16 \\\Rightarrow y^2=\pm 4 \\\Rightarrow y=\pm \sqrt{\pm4} \\\Rightarrow y=2, -2, 2i, -2iy4−16=0⇒y4=16⇒y2=±4⇒y=±±4⇒y=2,−2,2i,−2i
So, A={2,−2,2i,−2i},B={2,−2,2i,−2i}A=\{\sqrt{2},-\sqrt{2},\sqrt{2}i,-\sqrt{2}i \}, B=\{2,-2,2i,-2i\}A={2,−2,2i,−2i},B={2,−2,2i,−2i}
None is the singleton set (having just one element).
∵A∩B=ϕ\because A\cap B=\phi∵A∩B=ϕ
So, they are disjoint sets.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments