Let A={a, b, c}, B={d, e}, C={a, d}.
Find (i) A × B (ii) B × A (iii) A × (B C)
(iv) (A C) x B (v) A ∆ (B – C) (vi) Complement of (A ∆ B)
(vii) P(B C)
i)
"A \u00d7 B=\\{(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)\\}"
ii)
"B \u00d7 A=\\{(d,a),(d,b),(d,c),(e,a),(e,b),(e,c)\\}"
iii)
"(B C)=\\{d\\}"
"A \u00d7 (B C)=\\{(a,d),(b,d),(c,d)\\}"
iv)
"(A C)=\\{a\\}"
"(A C) \\times B=\\{(a,d),(a,e)\\}"
v)
"B \u2013 C=\\{e\\}"
"A \u2206 (B \u2013 C)=(A-(B-C))\\cup ((B-C)-A)=\\{a, b, c\\}\\cup \\{e\\}=\\{a, b, c,e\\}"
vi)
"A \u2206 B=(A-B)\\cup (B-A)=\\{a, b, c\\}\\cup \\{d, e\\}=\\{a, b, c,d,e\\}"
if universal set:
"U=\\{a, b, c,d,e\\}"
then complement of (A ∆ B) is empty set "\\empty"
vii)
"(B C)=\\{d\\}"
"P(B C)" is the set of all subsets of (BC)
"P(B C)=\\{\\{\\},\\{d\\}\\}"
Comments
Leave a comment