Question #264687

Let A={a, b, c}, B={d, e}, C={a, d}.

Find (i) A × B (ii) B × A (iii) A × (B C)

(iv) (A C) x B (v) A ∆ (B – C) (vi) Complement of (A ∆ B)

(vii) P(B C)


1
Expert's answer
2021-11-12T15:26:20-0500

i)

A×B={(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)}A × B=\{(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)\}


ii)

B×A={(d,a),(d,b),(d,c),(e,a),(e,b),(e,c)}B × A=\{(d,a),(d,b),(d,c),(e,a),(e,b),(e,c)\}


iii)

(BC)={d}(B C)=\{d\}

A×(BC)={(a,d),(b,d),(c,d)}A × (B C)=\{(a,d),(b,d),(c,d)\}


iv)

(AC)={a}(A C)=\{a\}

(AC)×B={(a,d),(a,e)}(A C) \times B=\{(a,d),(a,e)\}


v)

BC={e}B – C=\{e\}

A(BC)=(A(BC))((BC)A)={a,b,c}{e}={a,b,c,e}A ∆ (B – C)=(A-(B-C))\cup ((B-C)-A)=\{a, b, c\}\cup \{e\}=\{a, b, c,e\}


vi)

AB=(AB)(BA)={a,b,c}{d,e}={a,b,c,d,e}A ∆ B=(A-B)\cup (B-A)=\{a, b, c\}\cup \{d, e\}=\{a, b, c,d,e\}

if universal set:

U={a,b,c,d,e}U=\{a, b, c,d,e\}

then complement of (A ∆ B) is empty set \empty


vii)

(BC)={d}(B C)=\{d\}

P(BC)P(B C) is the set of all subsets of (BC)

P(BC)={{},{d}}P(B C)=\{\{\},\{d\}\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS