i)
A×B={(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)} 
ii)
B×A={(d,a),(d,b),(d,c),(e,a),(e,b),(e,c)} 
iii)
(BC)={d} 
A×(BC)={(a,d),(b,d),(c,d)} 
iv)
(AC)={a} 
(AC)×B={(a,d),(a,e)} 
v)
B–C={e} 
A∆(B–C)=(A−(B−C))∪((B−C)−A)={a,b,c}∪{e}={a,b,c,e} 
vi)
A∆B=(A−B)∪(B−A)={a,b,c}∪{d,e}={a,b,c,d,e} 
if universal set:
U={a,b,c,d,e} 
then complement of (A ∆ B) is empty set ∅ 
vii)
(BC)={d} 
P(BC) is the set of all subsets of (BC)
P(BC)={{},{d}} 
Comments