Find the simplest form of given Boolean expressions using algebraic methods.
i. A(A+B) + B(B+C) + C(C+A)
ii. (A+|B|)(B+C) + (A+B)(C+|A|)
iii. (A+B)(AC+A|C|)_+AB +B
iv. |A|(A+B) + (B+A)(A+|B|)
"(i)) A(A+B)+B(B+C)+C(C+A)\n\\\\\\Rightarrow \\quad A \\cdot A+A \\cdot B+B \\cdot B+B\\cdot C+C \\cdot C+C \\cdot A\n\\\\\\Rightarrow \\quad A+A B+B+B C+C+C A [\\because A.A=A, B.B=B, C.C=C]\n\\\\\\Rightarrow \\quad A(1+B)+B(1+C)+C(1+A)\n\\\\\\Rightarrow \\quad A+B+C \n\\\\ii) (A+\\bar{B})(B+C)+(A+B)(C+\\bar{A})\n\\\\\\Rightarrow A B+A C+\\bar{B} B+\\bar{B} C+A C+A \\bar{A}+B C+B\\bar{A}\n\\\\\\Rightarrow \\quad A B+A C+O+\\bar{B }C+A C+O+B C+B \\bar{A}\n\\\\\\Rightarrow \\quad A B+\\bar{B} C+A C+A C+B C+B \\bar{A}\n\\\\\\Rightarrow \\quad A B+\\bar{B }C+A C+B C+B \\bar{A}\\quad[A C+A C=A C]\n\\\\\\Rightarrow \\quad A B+B \\bar{A}+A C+\\bar{B} C+B C\n\\\\\\Rightarrow \\quad B(A+\\bar{A})+A C+C(\\bar{B}+B)\n\\\\\\Rightarrow \\quad B+A C+C \\quad[\\bar{A}+A=1]\n\\\\\\Rightarrow B+C(1+A) \\quad[C(1+A)=C]\n\\\\\\Rightarrow \\quad B+C\n\\\\iii) \\\\(A+B)(A C+A \\bar{C})+A B+B\n\\\\\\Rightarrow \\quad(A+B):(A(C+\\bar{C}))+A B+B\n\\\\\\Rightarrow \\quad(A+B) A+A B+B \\ [\\because C+\\bar{C}=1]\n\\\\\\Rightarrow \\quad A \\cdot A+B \\cdot A+A B+B\n\\\\\\Rightarrow \\quad A+B A+A B+B \\quad[A.A=A]\n\\\\\\Rightarrow \\quad A(1+B)+B(1+A)\n\\\\\\Rightarrow \\quad A+B \\quad\\left[\\begin{array}{c}\\therefore A(1+B)=A \\\\ B(1+A)=B\\end{array}\\right]\n\n\n\\\\ iv) \\\\\\bar{A}(A+B)+(B+A) \\cdot(A+\\bar{B})\n\\\\\\Rightarrow \\quad \\bar{A} A+\\bar{A }B+B A+B \\bar{B}+A \\cdot A+A \\bar{B}\n\\\\\\Rightarrow \\quad 0+\\bar{A} B+B A+O+A+A \\bar{B} \\quad[\\bar{A }A=0 ; B \\bar{B}=0]\n\\\\\\Rightarrow \\quad B(\\bar{A}+A)+A(1+\\bar{B})\n\\\\\\Rightarrow \\quad B+A \\quad\\left[\\begin{array}{l}\\because \\bar{A}+A=1 \\\\ A(1+\\bar{B})=A\\end{array}\\right]"
Comments
Leave a comment