For each of the following compound propositions give its truth table and derive an
equivalent compound proposition in disjunctive normal formal (DNF) and in conjunctive normal form (CNF).
(a) (p → q) → r
(b) (p ∧ ¬q) ∨ (p ↔ r)
a) (p → q) → r
The truth table is presented below
DNF:
"(p\\to q)\\to r\\iff (\\lnot p\\lor q)\\to r \\iff \\lnot(\\lnot p \\lor q)\\lor r\\iff(p\\land \\lnot q)\\lor r"
CNF:
"(p\\to q)\\to r\\iff (\\lnot p\\lor q)\\to r \\iff \\lnot(\\lnot p \\lor q)\\lor r\\iff(p\\land \\lnot q)\\lor r \\iff (r\\lor p)\\land (r\\lor \\lnot q)"
(b) (p ∧ ¬q) ∨ (p ↔ r)
The truth table is presented below
DNF:
"(p \u2227 \u00acq) \u2228 (p \u2194 r) \\iff (p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r)"
CNF:
"(p \u2227 \u00acq) \u2228 (p \u2194 r) \\iff (p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r) \\iff \\lnot(\\lnot((p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r)))\\iff \\lnot((\\lnot p \\lor q) \\land (\\lnot p \\lor \\lnot r) \\land (p\\lor r))\\iff \\lnot((\\lnot p\\lor(q\\land \\lnot r))\\land (p\\lor r))\\iff \\lnot(((\\lnot p \\lor (q\\land \\lnot r))\\land p)\\lor (\\lnot p \\lor (q\\land \\lnot r))\\land r))\\iff \\lnot((p\\land q\\land \\lnot r)\\lor (r \\land \\lnot p)) = (\\lnot p \\lor \\neg q \\lor r) \\land (\\lnot r \\lor p)"
Comments
Leave a comment