Question #259420

For each of the following compound propositions give its truth table and derive an




equivalent compound proposition in disjunctive normal formal (DNF) and in conjunc￾tive normal form (CNF).




(a) (p → q) → r




(b) (p ∧ ¬q) ∨ (p ↔ r)

1
Expert's answer
2021-11-01T16:12:51-0400

a) (p → q) → r

The truth table is presented below



DNF:

(pq)r    (¬pq)r    ¬(¬pq)r    (p¬q)r(p\to q)\to r\iff (\lnot p\lor q)\to r \iff \lnot(\lnot p \lor q)\lor r\iff(p\land \lnot q)\lor r

CNF:

(pq)r    (¬pq)r    ¬(¬pq)r    (p¬q)r    (rp)(r¬q)(p\to q)\to r\iff (\lnot p\lor q)\to r \iff \lnot(\lnot p \lor q)\lor r\iff(p\land \lnot q)\lor r \iff (r\lor p)\land (r\lor \lnot q)


(b) (p ∧ ¬q) ∨ (p ↔ r)

The truth table is presented below



DNF:

(p¬q)(pr)    (p¬q)(pr)(¬p¬r)(p ∧ ¬q) ∨ (p ↔ r) \iff (p ∧ ¬q) ∨ (p\land r) \lor (\lnot p \land \lnot r)

CNF:

(p¬q)(pr)    (p¬q)(pr)(¬p¬r)    ¬(¬((p¬q)(pr)(¬p¬r)))    ¬((¬pq)(¬p¬r)(pr))    ¬((¬p(q¬r))(pr))    ¬(((¬p(q¬r))p)(¬p(q¬r))r))    ¬((pq¬r)(r¬p))=(¬p¬qr)(¬rp)(p ∧ ¬q) ∨ (p ↔ r) \iff (p ∧ ¬q) ∨ (p\land r) \lor (\lnot p \land \lnot r) \iff \lnot(\lnot((p ∧ ¬q) ∨ (p\land r) \lor (\lnot p \land \lnot r)))\iff \lnot((\lnot p \lor q) \land (\lnot p \lor \lnot r) \land (p\lor r))\iff \lnot((\lnot p\lor(q\land \lnot r))\land (p\lor r))\iff \lnot(((\lnot p \lor (q\land \lnot r))\land p)\lor (\lnot p \lor (q\land \lnot r))\land r))\iff \lnot((p\land q\land \lnot r)\lor (r \land \lnot p)) = (\lnot p \lor \neg q \lor r) \land (\lnot r \lor p)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS