Answer to Question #259420 in Discrete Mathematics for King

Question #259420

For each of the following compound propositions give its truth table and derive an




equivalent compound proposition in disjunctive normal formal (DNF) and in conjunc￾tive normal form (CNF).




(a) (p → q) → r




(b) (p ∧ ¬q) ∨ (p ↔ r)

1
Expert's answer
2021-11-01T16:12:51-0400

a) (p → q) → r

The truth table is presented below



DNF:

"(p\\to q)\\to r\\iff (\\lnot p\\lor q)\\to r \\iff \\lnot(\\lnot p \\lor q)\\lor r\\iff(p\\land \\lnot q)\\lor r"

CNF:

"(p\\to q)\\to r\\iff (\\lnot p\\lor q)\\to r \\iff \\lnot(\\lnot p \\lor q)\\lor r\\iff(p\\land \\lnot q)\\lor r \\iff (r\\lor p)\\land (r\\lor \\lnot q)"


(b) (p ∧ ¬q) ∨ (p ↔ r)

The truth table is presented below



DNF:

"(p \u2227 \u00acq) \u2228 (p \u2194 r) \\iff (p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r)"

CNF:

"(p \u2227 \u00acq) \u2228 (p \u2194 r) \\iff (p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r) \\iff \\lnot(\\lnot((p \u2227 \u00acq) \u2228 (p\\land r) \\lor (\\lnot p \\land \\lnot r)))\\iff \\lnot((\\lnot p \\lor q) \\land (\\lnot p \\lor \\lnot r) \\land (p\\lor r))\\iff \\lnot((\\lnot p\\lor(q\\land \\lnot r))\\land (p\\lor r))\\iff \\lnot(((\\lnot p \\lor (q\\land \\lnot r))\\land p)\\lor (\\lnot p \\lor (q\\land \\lnot r))\\land r))\\iff \\lnot((p\\land q\\land \\lnot r)\\lor (r \\land \\lnot p)) = (\\lnot p \\lor \\neg q \\lor r) \\land (\\lnot r \\lor p)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS