(a) Find the inverse of 19 modulo 141, using the Extended Euclidean Algorithm.
Show your steps.
Euclidean Algorithm:
141=7⋅19+8141=7\cdot 19+8141=7⋅19+8
19=2⋅8+319=2\cdot 8+319=2⋅8+3
8=2⋅3+28=2\cdot 3+28=2⋅3+2
3=1⋅2+13=1\cdot 2+13=1⋅2+1
We have:
1=3−2 =3−(8−2⋅3) =3⋅3−8 =3⋅(19−2⋅8)−8 =3⋅19−7⋅8 =3⋅19−7⋅(141−7⋅19) =52⋅19−7⋅1411= \mathbf{3}-\mathbf{2} \\ \ \ \ = \mathbf{3}-(\mathbf{8}-2\cdot \mathbf{3)} \\ \ \ \ =3\cdot \mathbf{3}-\mathbf{8} \\ \ \ \ =3\cdot (\mathbf{19}-2\cdot \mathbf{8})-\mathbf{8} \\ \ \ \ =3\cdot \mathbf{19}-7\cdot \mathbf{8} \\ \ \ \ =3\cdot \mathbf{19}-7\cdot (\mathbf{141}-7\cdot \mathbf{19}) \\ \ \ \ =52\cdot \mathbf{19}-7\cdot \mathbf{141}1=3−2 =3−(8−2⋅3) =3⋅3−8 =3⋅(19−2⋅8)−8 =3⋅19−7⋅8 =3⋅19−7⋅(141−7⋅19) =52⋅19−7⋅141
1=52⋅19−7⋅141≡52⋅19mod 1411=52\cdot 19-7\cdot 141\equiv 52\cdot 19\mod 1411=52⋅19−7⋅141≡52⋅19mod141
Answer: 525252 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments