Question #259470

(a) Find the inverse of 19 modulo 141, using the Extended Euclidean Algorithm.




Show your steps.

1
Expert's answer
2021-11-02T14:08:35-0400

Euclidean Algorithm:

141=719+8141=7\cdot 19+8

19=28+319=2\cdot 8+3

8=23+28=2\cdot 3+2

3=12+13=1\cdot 2+1


We have:

1=32   =3(823)   =338   =3(1928)8   =31978   =3197(141719)   =521971411= \mathbf{3}-\mathbf{2} \\ \ \ \ = \mathbf{3}-(\mathbf{8}-2\cdot \mathbf{3)} \\ \ \ \ =3\cdot \mathbf{3}-\mathbf{8} \\ \ \ \ =3\cdot (\mathbf{19}-2\cdot \mathbf{8})-\mathbf{8} \\ \ \ \ =3\cdot \mathbf{19}-7\cdot \mathbf{8} \\ \ \ \ =3\cdot \mathbf{19}-7\cdot (\mathbf{141}-7\cdot \mathbf{19}) \\ \ \ \ =52\cdot \mathbf{19}-7\cdot \mathbf{141}


1=521971415219mod1411=52\cdot 19-7\cdot 141\equiv 52\cdot 19\mod 141


Answer: 5252 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS