(a) Find the inverse of 19 modulo 141, using the Extended Euclidean Algorithm.
Show your steps.
Euclidean Algorithm:
"141=7\\cdot 19+8"
"19=2\\cdot 8+3"
"8=2\\cdot 3+2"
"3=1\\cdot 2+1"
We have:
"1= \\mathbf{3}-\\mathbf{2} \\\\ \\ \\ \\ = \\mathbf{3}-(\\mathbf{8}-2\\cdot \\mathbf{3)}\n\\\\ \\ \\ \\ =3\\cdot \\mathbf{3}-\\mathbf{8}\n\\\\ \\ \\ \\ =3\\cdot (\\mathbf{19}-2\\cdot \\mathbf{8})-\\mathbf{8}\n\\\\ \\ \\ \\ =3\\cdot \\mathbf{19}-7\\cdot \\mathbf{8}\n\\\\ \\ \\ \\ =3\\cdot \\mathbf{19}-7\\cdot (\\mathbf{141}-7\\cdot \\mathbf{19})\n\\\\ \\ \\ \\ =52\\cdot \\mathbf{19}-7\\cdot \\mathbf{141}"
"1=52\\cdot 19-7\\cdot 141\\equiv 52\\cdot 19\\mod 141"
Answer: "52" .
Comments
Leave a comment