show that C(n+1,k)=C(n,k-1)+C(n,k)
"C_{n + 1}^k = \\frac{{(n + 1)!}}{{k!(n + 1 - k)!}}"
"C_n^{k - 1} + C_n^k = \\frac{{n!}}{{(k - 1)!(n - k + 1)!}} + \\frac{{n!}}{{k!(n - k)!}} = \\frac{{n!k}}{{k!(n - k + 1)!}} + \\frac{{n!(n - k + 1)}}{{k!(n - k + 1)!}} = \\frac{{n!k + n!(n - k + 1)}}{{k!(n - k + 1)!}} = \\frac{{n!(k + n - k + 1)}}{{k!(n - k + 1)!}} = \\frac{{n!(n + 1)}}{{k!(n - k + 1)!}} = \\frac{{(n + 1)!}}{{k!(n + 1 - k)!}}"
"\\frac{{(n + 1)!}}{{k!(n + 1 - k)!}} = \\frac{{(n + 1)!}}{{k!(n + 1 - k)!}} \\Rightarrow C_{n + 1}^k = C_n^{k - 1} + C_n^k"
Comments
Leave a comment