Let A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A = { 1 , 2 , 3 , 4 , 5 } and R R R be the relation on A A A such that R = { ( 1 , 4 ) , ( 2 , 1 ) , ( 2 , 5 ) , ( 2 , 4 ) , ( 4 , 3 ) , ( 5 , 3 ) , ( 3 , 2 ) } . R= \{(1,4),(2,1),(2,5),(2,4),(4,3),(5,3),(3,2)\}. R = {( 1 , 4 ) , ( 2 , 1 ) , ( 2 , 5 ) , ( 2 , 4 ) , ( 4 , 3 ) , ( 5 , 3 ) , ( 3 , 2 )} .
Warshall's Algorithm:
Step 1: put W : = M R , k : = 0. W:=M_R,\ k:=0. W := M R , k := 0.
Step 2: put k : = k + 1. k:=k+1. k := k + 1.
Step 3: for all i ≠ k i\ne k i = k such that w i k = 1 , w_{ik}=1, w ik = 1 , and for all j j j put w i j : = w i j ∨ w k j . w_{ij}:=w_{ij}\lor w_{kj}. w ij := w ij ∨ w kj .
Step 4: if k = n k=n k = n then STOP else go to the step 2.
Let us find the transitive closure of R R R by Warshall's Algorithm:
W ( 0 ) = M R = ( 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 ) W^{(0)}=M_R=\begin{pmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 1 & 1\\
0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 0
\end{pmatrix} W ( 0 ) = M R = ⎝ ⎛ 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 ⎠ ⎞
W ( 1 ) = ( 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 ) W^{(1)}=\begin{pmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 1 & 1\\
0 & 1 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 0
\end{pmatrix} W ( 1 ) = ⎝ ⎛ 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 ⎠ ⎞
W ( 2 ) = ( 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 ) W^{(2)}=\begin{pmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 1 & 1\\
1 & 1 & 0 & 1 & 1\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 0
\end{pmatrix} W ( 2 ) = ⎝ ⎛ 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 ⎠ ⎞
W ( 3 ) = ( 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 ) W^{(3)}=\begin{pmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 1 & 1\\
1 & 1 & 0 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1
\end{pmatrix} W ( 3 ) = ⎝ ⎛ 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 ⎠ ⎞
W ( 4 ) = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) W^{(4)}=\begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1
\end{pmatrix} W ( 4 ) = ⎝ ⎛ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⎠ ⎞
M R ∗ = W ( 5 ) = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) M_{R^*}=W^{(5)}=\begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1\\
1 & 1 & 1 & 1 & 1
\end{pmatrix} M R ∗ = W ( 5 ) = ⎝ ⎛ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⎠ ⎞
It follows that the transitive closure R ∗ R^* R ∗ of R R R is the following:
R ∗ = A × A . R^*=A\times A. R ∗ = A × A .
Comments