Let fn be the nth Fibonacci number. Prove that, for n > 0 [Hint: use strong induction]:
fn = 1/√5 [((1+√5)/2)n - ((1-√5)/2)n ]
for n=1:
"F_1=1"
let for n=k:
"F_k=\\frac{(\\frac{1+\\sqrt5}{2})^k-(\\frac{1-\\sqrt5}{2})^k}{\\sqrt5}"
then for n=k+1:
"F_{k+1}=F_k+F_{k-1}=\\frac{(\\frac{1+\\sqrt5}{2})^{k}-(\\frac{1-\\sqrt5}{2})^{k}}{\\sqrt5}+\\frac{(\\frac{1+\\sqrt5}{2})^{k-1}-(\\frac{1-\\sqrt5}{2})^{k-1}}{\\sqrt5}="
"=\\frac{1}{\\sqrt 5}((\\frac{1+\\sqrt 5}{2})^k(1+\\frac{2}{1+\\sqrt 5})-(\\frac{1-\\sqrt 5}{2})^k(1+\\frac{2}{1-\\sqrt 5}))"
"(1+\\frac{2}{1+\\sqrt 5})(\\frac{1-\\sqrt 5}{1-\\sqrt 5})=\\frac{1+\\sqrt 5}{2}"
"(1+\\frac{2}{1-\\sqrt 5})(\\frac{1+\\sqrt 5}{1+\\sqrt 5})=\\frac{1-\\sqrt 5}{2}"
So:
"F_{k+1}=\\frac{1}{\\sqrt 5}((\\frac{1+\\sqrt 5}{2})^k(\\frac{1+\\sqrt 5}{2})-(\\frac{1-\\sqrt 5}{2})^k(\\frac{1-\\sqrt 5}{2}))=\\frac{(\\frac{1+\\sqrt5}{2})^{k+1}-(\\frac{1-\\sqrt5}{2})^{k+1}}{\\sqrt5}"
Comments
Leave a comment