for n=1:
F 1 = 1 F_1=1 F 1 = 1
let for n=k:
F k = ( 1 + 5 2 ) k − ( 1 − 5 2 ) k 5 F_k=\frac{(\frac{1+\sqrt5}{2})^k-(\frac{1-\sqrt5}{2})^k}{\sqrt5} F k = 5 ( 2 1 + 5 ) k − ( 2 1 − 5 ) k
then for n=k+1:
F k + 1 = F k + F k − 1 = ( 1 + 5 2 ) k − ( 1 − 5 2 ) k 5 + ( 1 + 5 2 ) k − 1 − ( 1 − 5 2 ) k − 1 5 = F_{k+1}=F_k+F_{k-1}=\frac{(\frac{1+\sqrt5}{2})^{k}-(\frac{1-\sqrt5}{2})^{k}}{\sqrt5}+\frac{(\frac{1+\sqrt5}{2})^{k-1}-(\frac{1-\sqrt5}{2})^{k-1}}{\sqrt5}= F k + 1 = F k + F k − 1 = 5 ( 2 1 + 5 ) k − ( 2 1 − 5 ) k + 5 ( 2 1 + 5 ) k − 1 − ( 2 1 − 5 ) k − 1 =
= 1 5 ( ( 1 + 5 2 ) k ( 1 + 2 1 + 5 ) − ( 1 − 5 2 ) k ( 1 + 2 1 − 5 ) ) =\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^k(1+\frac{2}{1+\sqrt 5})-(\frac{1-\sqrt 5}{2})^k(1+\frac{2}{1-\sqrt 5})) = 5 1 (( 2 1 + 5 ) k ( 1 + 1 + 5 2 ) − ( 2 1 − 5 ) k ( 1 + 1 − 5 2 ))
( 1 + 2 1 + 5 ) ( 1 − 5 1 − 5 ) = 1 + 5 2 (1+\frac{2}{1+\sqrt 5})(\frac{1-\sqrt 5}{1-\sqrt 5})=\frac{1+\sqrt 5}{2} ( 1 + 1 + 5 2 ) ( 1 − 5 1 − 5 ) = 2 1 + 5
( 1 + 2 1 − 5 ) ( 1 + 5 1 + 5 ) = 1 − 5 2 (1+\frac{2}{1-\sqrt 5})(\frac{1+\sqrt 5}{1+\sqrt 5})=\frac{1-\sqrt 5}{2} ( 1 + 1 − 5 2 ) ( 1 + 5 1 + 5 ) = 2 1 − 5
So:
F k + 1 = 1 5 ( ( 1 + 5 2 ) k ( 1 + 5 2 ) − ( 1 − 5 2 ) k ( 1 − 5 2 ) ) = ( 1 + 5 2 ) k + 1 − ( 1 − 5 2 ) k + 1 5 F_{k+1}=\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^k(\frac{1+\sqrt 5}{2})-(\frac{1-\sqrt 5}{2})^k(\frac{1-\sqrt 5}{2}))=\frac{(\frac{1+\sqrt5}{2})^{k+1}-(\frac{1-\sqrt5}{2})^{k+1}}{\sqrt5} F k + 1 = 5 1 (( 2 1 + 5 ) k ( 2 1 + 5 ) − ( 2 1 − 5 ) k ( 2 1 − 5 )) = 5 ( 2 1 + 5 ) k + 1 − ( 2 1 − 5 ) k + 1
Comments