Question #256693

Let fn be the nth Fibonacci number. Prove that, for n > 0 [Hint: use strong induction]:

fn = 1/√5 [((1+√5)/2)n - ((1-√5)/2)n ]


1
Expert's answer
2021-10-26T17:58:35-0400

for n=1:

F1=1F_1=1


let for n=k:

Fk=(1+52)k(152)k5F_k=\frac{(\frac{1+\sqrt5}{2})^k-(\frac{1-\sqrt5}{2})^k}{\sqrt5}


then for n=k+1:

Fk+1=Fk+Fk1=(1+52)k(152)k5+(1+52)k1(152)k15=F_{k+1}=F_k+F_{k-1}=\frac{(\frac{1+\sqrt5}{2})^{k}-(\frac{1-\sqrt5}{2})^{k}}{\sqrt5}+\frac{(\frac{1+\sqrt5}{2})^{k-1}-(\frac{1-\sqrt5}{2})^{k-1}}{\sqrt5}=


=15((1+52)k(1+21+5)(152)k(1+215))=\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^k(1+\frac{2}{1+\sqrt 5})-(\frac{1-\sqrt 5}{2})^k(1+\frac{2}{1-\sqrt 5}))


(1+21+5)(1515)=1+52(1+\frac{2}{1+\sqrt 5})(\frac{1-\sqrt 5}{1-\sqrt 5})=\frac{1+\sqrt 5}{2}


(1+215)(1+51+5)=152(1+\frac{2}{1-\sqrt 5})(\frac{1+\sqrt 5}{1+\sqrt 5})=\frac{1-\sqrt 5}{2}


So:


Fk+1=15((1+52)k(1+52)(152)k(152))=(1+52)k+1(152)k+15F_{k+1}=\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^k(\frac{1+\sqrt 5}{2})-(\frac{1-\sqrt 5}{2})^k(\frac{1-\sqrt 5}{2}))=\frac{(\frac{1+\sqrt5}{2})^{k+1}-(\frac{1-\sqrt5}{2})^{k+1}}{\sqrt5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS