Prove that for all integer n>=3, P(n+1,3) - P(n,3) = 3P(n,2)
.
"\\\\\\text {To Prove}: P(n+1 , 3)-P(n, 3)=3 P(n, 2) \\quad"
"\\\\ \\text{Proof: LHS}=\n\\\\ [\\text{Using}\\ P(n, \\mu)=\\frac{n !}{(n-\\mu) !}]\n\\\\ \\frac{(n+1) !}{(n+1-3) !}-\\frac{n !}{(n-3) !}\n\\\\ = \\frac{n !(n+1)}{(n-2) !}-\\frac{n !}{(n-3) !}\n\\\\ = \\frac{(n+1) n !}{(n-2)(n-3) !}-\\frac{n !}{(n-3) !}\n\\\\ = \\frac{n !}{(n-3) !}\\left[\\frac{(n+1)}{(n-2)}-1\\right]\n\\\\ = \\frac{n !}{(n-3) !}\\left[\\frac{n+1-n+2}{n-2}\\right]\n\\\\ =\\frac{n !}{(n-3) !}\\left[\\frac{3}{(n-2)}\\right]\n\\\\ =\\frac{3 n !}{(n-2)(n-3) !}=3 \\frac{n !}{(n-2) !}\n\\\\ = \\quad 3 P(n, 2)= \\text{RHS}\n\\\\ \\text{Hence proved.}"
Comments
Leave a comment