Question #252359

Prove that for all integer n>=3, P(n+1,3) - P(n,3) = 3P(n,2)

.



1
Expert's answer
2021-10-19T02:04:14-0400

To Prove:P(n+1,3)P(n,3)=3P(n,2)\\\text {To Prove}: P(n+1 , 3)-P(n, 3)=3 P(n, 2) \quad

\\ \text{Proof: LHS}= \\ [\text{Using}\ P(n, \mu)=\frac{n !}{(n-\mu) !}] \\ \frac{(n+1) !}{(n+1-3) !}-\frac{n !}{(n-3) !} \\ = \frac{n !(n+1)}{(n-2) !}-\frac{n !}{(n-3) !} \\ = \frac{(n+1) n !}{(n-2)(n-3) !}-\frac{n !}{(n-3) !} \\ = \frac{n !}{(n-3) !}\left[\frac{(n+1)}{(n-2)}-1\right] \\ = \frac{n !}{(n-3) !}\left[\frac{n+1-n+2}{n-2}\right] \\ =\frac{n !}{(n-3) !}\left[\frac{3}{(n-2)}\right] \\ =\frac{3 n !}{(n-2)(n-3) !}=3 \frac{n !}{(n-2) !} \\ = \quad 3 P(n, 2)= \text{RHS} \\ \text{Hence proved.}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS