Make a Fully truth table and identify if it is a tautology, contradiction, contingency.
¬(¬(P∧Q)↔(¬P)∨(¬Q))
¬(¬(P∧Q)⟷(¬P)∨(¬Q)PQ¬P¬QP∧Q¬(P∧Q)¬(¬(P∧Q))¬P∨¬QTTFFTFTFTFFTFTFTFTTFFTFTFFTTFTFT\neg(\neg(P\wedge Q)\longleftrightarrow(\neg P)\vee(\neg Q)\\ \def\arraystretch{1.5} \begin{array}{c|c|c|c|c|c|c|c} P & Q &\neg P&\neg Q& P\wedge Q& \neg(P \wedge Q)&\neg(\neg(P \wedge Q))& \neg P \vee \neg Q \\ \hline T & T &F&F &T&F&T&F\\ T & F &F&T& F&T&F&T\\ F&T&T&F&F&T&F&T\\ F&F&T&T&F&T&F&T \end{array}¬(¬(P∧Q)⟷(¬P)∨(¬Q)PTTFFQTFTF¬PFFTT¬QFTFTP∧QTFFF¬(P∧Q)FTTT¬(¬(P∧Q))TFFF¬P∨¬QFTTT
Since the second to the last column is not the same as the last column, then this is a contradiction.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment