Use algebra of sets to prove that,
[(π΅ β π΄)' β© π΄] β π΄' = π΄
Solution:
LHS=[(π΅βπ΄)β²β©π΄]βπ΄β²=[(π΅β²βπ΄β²)β©π΄]βπ΄β²LHS=[(π΅ β π΄)' β© π΄] β π΄' \\=[(π΅' β π΄')β© π΄] β π΄'LHS=[(BβA)β²β©A]βAβ²=[(Bβ²βAβ²)β©A]βAβ²
=[(π΅β²βπ΄β²)β©π΄]β©[π΄β²]β² [β΅PβQ=Pβ©Qβ²]=[(π΅' β π΄') β© π΄] β© [π΄']' \ \ [\because P-Q=Pβ©Q']=[(Bβ²βAβ²)β©A]β©[Aβ²]β² [β΅PβQ=Pβ©Qβ²]
=[(π΅β²βπ΄β²)β©π΄]β©A=(π΅β²βπ΄β²)β©π΄β©π΄=(π΅β²βπ΄β²)β©π΄=[(π΅' β π΄') β© π΄] β© A \\=(π΅' β π΄') β© π΄β© π΄ \\=(π΅' β π΄') β© π΄=[(Bβ²βAβ²)β©A]β©A=(Bβ²βAβ²)β©Aβ©A=(Bβ²βAβ²)β©A
=(π΅βπ΄)β²β©π΄=Aβ(BβA)=A=RHS\\=(π΅ β π΄)' β© π΄ \\=A-(B-A) \\=A \\=RHS=(BβA)β²β©A=Aβ(BβA)=A=RHS
Hence, proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment