Answer to Question #252170 in Discrete Mathematics for Wafa Abbas

Question #252170

Use algebra of sets to prove that,

 [(𝐡 βˆ’ 𝐴)' ∩ 𝐴] βˆ’ 𝐴' = 𝐴


1
Expert's answer
2021-10-19T08:02:58-0400

Solution:

LHS=[(π΅βˆ’π΄)β€²βˆ©π΄]βˆ’π΄β€²=[(π΅β€²βˆ’π΄β€²)∩𝐴]βˆ’π΄β€²LHS=[(𝐡 βˆ’ 𝐴)' ∩ 𝐴] βˆ’ 𝐴' \\=[(𝐡' βˆ’ 𝐴')∩ 𝐴] βˆ’ 𝐴'

=[(π΅β€²βˆ’π΄β€²)∩𝐴]∩[𝐴′]β€²  [∡Pβˆ’Q=P∩Qβ€²]=[(𝐡' βˆ’ 𝐴') ∩ 𝐴] ∩ [𝐴']' \ \ [\because P-Q=P∩Q']

=[(π΅β€²βˆ’π΄β€²)∩𝐴]∩A=(π΅β€²βˆ’π΄β€²)∩𝐴∩𝐴=(π΅β€²βˆ’π΄β€²)∩𝐴=[(𝐡' βˆ’ 𝐴') ∩ 𝐴] ∩ A \\=(𝐡' βˆ’ 𝐴') ∩ 𝐴∩ 𝐴 \\=(𝐡' βˆ’ 𝐴') ∩ 𝐴

=(π΅βˆ’π΄)β€²βˆ©π΄=Aβˆ’(Bβˆ’A)=A=RHS\\=(𝐡 βˆ’ 𝐴)' ∩ 𝐴 \\=A-(B-A) \\=A \\=RHS

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment