Answer to Question #231721 in Discrete Mathematics for rama

Question #231721

Check whether the compound proposition

(p ∨¬q) ∧(q ∨¬r) ∧(r ∨¬p) ∧(p ∨q ∨r) ∧(¬p ∨¬q ∨¬r)

is satisfiable or not?



1
Expert's answer
2021-09-01T15:53:06-0400

Using distribution property of  and  operators, the given proposition may be re-written as:

(p V((q) ∧(q ∨~r) ∧(~qV~s)∧(~rV~s)∧(qV~s)))∧(~pV~qV~s)

If we choose p  to be true, that is p=1, and q to be false, that is q=0, then  

(p V((q) ∧(q ∨~r) ∧(~qV~s)∧(~rV~s)∧(qV~s)))∧(~pV~qV~s)

equals 1 as p=1.

Also,  (~pV~qV~s) equals 1 as q=0  gives ~q=1.

Thus, we shall get the truth-value of the given proposition to be  for p=1  , q=0 and  and r and s may take either value  0 or 1 

Thus, the given proposition is satisfiable.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS