Answer to Question #227437 in Discrete Mathematics for Raiyan

Question #227437

Prove that (a ∧ (b → ¬a)) → ¬b is a tautology.


1
Expert's answer
2021-08-20T09:52:06-0400

"(a \u2227 (b \u2192 \u00aca)) \u2192 \u00acb\n\\\\\\equiv (a \u2227 (\u00acb\u2228 \u00aca)) \u2192 \u00acb\n\\\\\\equiv ((a \u2227 \u00acb)\u2228(a \u2227\u00aca)) \u2192 \u00acb\n\\\\\\equiv ((a \u2227 \u00acb)\u2228F) \u2192 \u00acb\n\\\\\\equiv (a \u2227\u00acb) \u2192 \u00acb"

"\\\\\\equiv \u00ac(a \u2227\u00acb) \u2228 \u00acb\n\\\\\\equiv (\u00aca \u2228b) \u2228 \u00acb\n\\\\\\equiv \u00aca \u2228 (b \u2228\u00acb)\n\\\\\\equiv \u00aca \u2228 T\n\\\\\\equiv T"

Thus, it is a tautology.

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS