Prove that (a ∧ (b → ¬a)) → ¬b is a tautology.
"(a \u2227 (b \u2192 \u00aca)) \u2192 \u00acb\n\\\\\\equiv (a \u2227 (\u00acb\u2228 \u00aca)) \u2192 \u00acb\n\\\\\\equiv ((a \u2227 \u00acb)\u2228(a \u2227\u00aca)) \u2192 \u00acb\n\\\\\\equiv ((a \u2227 \u00acb)\u2228F) \u2192 \u00acb\n\\\\\\equiv (a \u2227\u00acb) \u2192 \u00acb"
"\\\\\\equiv \u00ac(a \u2227\u00acb) \u2228 \u00acb\n\\\\\\equiv (\u00aca \u2228b) \u2228 \u00acb\n\\\\\\equiv \u00aca \u2228 (b \u2228\u00acb)\n\\\\\\equiv \u00aca \u2228 T\n\\\\\\equiv T"
Thus, it is a tautology.
Hence, proved.
Comments
Leave a comment