Answer to Question #227156 in Discrete Mathematics for Jun

Question #227156

Let p, q and r be statements. Use the Laws of Logical Equivalence and the equivalence of → to a disjunction to show that: ∼ ((p ∨ (q →∼ r)) ∧ (r → (p∨ ∼ q))) ≡ (∼ p ∧ q) ∧ r.


1
Expert's answer
2021-08-18T16:10:32-0400

Let us show that "\u223c ((p \u2228 (q \u2192\u223c r)) \u2227 (r \u2192 (p\u2228 \u223c q))) \u2261 (\u223c p \u2227 q) \u2227 r:"


"\u223c ((p \u2228 (q \u2192\u223c r)) \u2227 (r \u2192 (p\u2228 \u223c q))) \\\\\n\u2261 \u223c ((p \u2228 (\\sim q \\lor \u223c r)) \u2227 (\\sim r \\lor (p\u2228 \u223c q)))\\\\\n\u2261 \u223c ((p \u2228 (\u223c r \\lor \\sim q)) \u2227 (\\sim r \\lor (p\u2228 \u223c q)))\\\\\n\u2261 \u223c ((p \u2228 \u223c r) \\lor \\sim q) \u2227 (\\sim r \\lor (p\u2228 \u223c q)))\\\\\n\u2261 \u223c ((\u223c r \u2228 p) \\lor \\sim q) \u2227 (\\sim r \\lor (p\u2228 \u223c q)))\\\\\n\u2261 \u223c ((\u223c r \u2228( p \\lor \\sim q)) \u2227 (\\sim r \\lor (p\u2228 \u223c q)))\\\\\n\u2261 \u223c (\u223c r \u2228( p \\lor \\sim q)) \\\\\n\u2261 \u223c (\u223c r )\\land \\sim( p \\lor \\sim q)) \\\\\n\u2261 r \\land( \\sim p \\land\\sim( \\sim q))) \\\\\n\u2261 r \\land( \\sim p \\land q)) \\\\\n\u2261 ( \\sim p \\land q)) \\land r."



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS