Using laws of logic solve the following compound propositions. Also indicate the names
of laws.
[π β§ (Β¬π β¨ π)] β¨ [π β§ Β¬(π β§ π)]
Let us use laws of logic solve the following compound propositions.
"[\ud835\udc5d \u2227 (\u00ac\ud835\udc5d \u2228 \ud835\udc5e)] \u2228 [\ud835\udc5e \u2227 \u00ac(\ud835\udc5d \u2227 \ud835\udc5e)]"
| use the distributive law |
"=[(\ud835\udc5d \u2227 \u00ac\ud835\udc5d) \u2228(p\\land \ud835\udc5e)] \u2228 [\ud835\udc5e \u2227 \u00ac(\ud835\udc5d \u2227 \ud835\udc5e)]"
| use de Morgan law |
"=[(\ud835\udc5d \u2227 \u00ac\ud835\udc5d) \u2228(p\\land \ud835\udc5e)] \u2228 [\ud835\udc5e \u2227 (\u00ac\ud835\udc5d \\lor\\neg \ud835\udc5e)]"
| use the law of contradiction |
"=[F \u2228(p\\land \ud835\udc5e)] \u2228 [\ud835\udc5e \u2227 (\u00ac\ud835\udc5d \\lor\\neg \ud835\udc5e)]"
| use the distributive law |
"=[F \u2228(p\\land \ud835\udc5e)] \u2228 [(\ud835\udc5e \u2227 \u00ac\ud835\udc5d) \\lor(q\\land \\neg \ud835\udc5e)]"
| use the constant law |
"=(p\\land \ud835\udc5e) \u2228 [(\ud835\udc5e \u2227 \u00ac\ud835\udc5d) \\lor(q\\land \\neg \ud835\udc5e)]"
| use the law of contradiction |
"=(p\\land \ud835\udc5e) \u2228 [(\ud835\udc5e \u2227 \u00ac\ud835\udc5d) \\lor F]"
| use the constant law |
"=(p\\land \ud835\udc5e) \u2228 (\ud835\udc5e \u2227 \u00ac\ud835\udc5d)"
| use the commutative law |
"=(q\\land p) \u2228 (\ud835\udc5e \u2227 \u00ac\ud835\udc5d)"
| use the distributive law |
"=q\\land (p \u2228 \u00ac\ud835\udc5d)"
| use theΒ lawΒ of the excluded third |
"=q\\land T"
| use the constant law |
"=q"
Comments
Leave a comment