Q3:
List the 16 different relations on the set {0,1}.
Note: No partial credit would be admissible in this question.
Let us list the 16 different binary relations on the set "\\{0,1\\}". Taking into account that "\\{0,1\\}\\times\\{0,1\\}=\\{(0,0),(0,1),(1,0),(1,1)\\}", we conclude that relations are following:
"R_1=\\emptyset,\\ R_2=\\{(0,0)\\},\\ R_3=\\{(0,1)\\},\\ R_4=\\{(1,0)\\},\\ R_5=\\{(1,1)\\},\\"
"R_6=\\{(0,0),(0,1)\\},\\ R_7=\\{(0,0),(1,0)\\},\\ R_8=\\{(0,0),(1,1)\\},\\"
"R_9=\\{(0,1),(1,0)\\},\\ R_{10}=\\{(0,1),(1,1)\\},\\ R_{11}=\\{(1,0),(1,1)\\},\\"
"R_{12}=\\{(0,0),(0,1),(1,0)\\},\\ R_{13}=\\{(0,0),(0,1),(1,1)\\},\\ R_{14}=\\{(0,0),(1,1),(1,0)\\},\\"
"R_{15}=\\{(1,1),(0,1),(1,0)\\},\\ R_{16}=\\{(0,0),(0,1),(1,0),(1,1)\\}."
Comments
Leave a comment