1. Simplify the following Boolean expressions using algebraic methods.
1.
A(A+B)+B(B+C)+C(C+A)
2.
(A+B ̅)(B+C)+(A+B)(C+A ̅)
3.
(A+B)(AC+AC ̅)+AB+B
4.
A ̅(A+B)+(B+A)(A+B ̅)
Basic Rules:
1.) "A(A+B)+B(B+C)+C(C+A)"
"\\Rightarrow A\\cdot A+A\\cdot B+B\\cdot B+B\\cdot C+C\\cdot C+C\\cdot A\\\\\\Rightarrow A+AB+B+BC+C+CA\\ \\ \\{\\because A\\cdot A=A\\}"
"\\Rightarrow A(1+B)+B(1+C)+C(1+A)\\\\\\Rightarrow A+B+C\\ \\ \\ \\{\\because \\ 1+A=1\\}"
2.) "(A+\\bar B)(B+C)+(A+B)(C+\\bar A)"
"\\Rightarrow AB+AC+\\bar BB+\\bar BC+AC+A\\bar A+BC+B\\bar A\\\\\\Rightarrow AB+AC+BC+\\bar BC+\\bar BA\\ \\ \\ \\{\\because\\ A \\bar A=B\\bar B=0\\ \\ \\}"
"\\Rightarrow B(A+\\bar A)+AC+C(B+\\bar B)\\\\\\Rightarrow B\\cdot 1+AC+C\\cdot1\\\\\\Rightarrow B+C(1+A)\\\\\\Rightarrow B+C"
3.) "(A+B)(AC+A\\bar C)+AB+B"
"\\implies (A+B)\\cdot A(C+\\bar C)+B(1+A)\\\\\\implies A(A+B)+B\\\\\\implies A\\cdot A +AB+B\\\\\\implies A+AB+B\\\\\\implies A(1+B)+B\\\\\\implies A+B"
4.) "\\bar A(A+B)+(B+A)(A+\\bar B)"
"\\implies \\bar A\\cdot A+\\bar A\\cdot B+BA+\\bar BB+AA+A\\bar B\\\\\\implies 0+\\bar AB+BA+0+AA+A\\bar B\\ \\ \\ \\{\\because\\ \\ \\bar A\\cdot A=0\\ \\&\\ A\\cdot A=A\\}"
"\\implies A+BA+\\bar AB+A\\bar B\\\\\\implies A(1+B)+\\bar AB+A\\bar B\\ (\\because \\ 1+B=1)\\\\\\implies A+\\bar AB+A\\bar B\\\\\\implies A(1+B)+\\bar AB+A\\bar B\\\\\\implies (AA+AB)+\\bar AB+A\\bar B\\\\\\implies AA+AB+A\\bar A+\\bar AB+A\\bar B\\\\\\implies (A+\\bar A)(A+B)+A\\bar B\\\\\\implies 1\\cdot(A+B)+A\\bar B\\\\\\implies A+B+A\\bar B\\\\\\implies A(1+\\bar B)+B\\\\\\implies A+B"
Comments
Leave a comment