Show that ¬(p ⊕ q) and p ↔ q are logically equivalent
Let us show that "\u00ac(p \u2295 q)" and "p \u2194 q" are logically equivalent using truth table:
"\\begin{array}{||c|c||c|c|c|}\n\\hline\n\\hline\np & q & p\\oplus q & \\neg(p\\oplus q) & p \u2194 q\\\\\n\\hline\n\\hline\nF & F & F & T & T\\\\\n\\hline\nF & T & T & F & F\\\\\n\\hline\nT & F & T & F & F\\\\\n\\hline\nT & T & F & T & T\\\\\n\\hline\n\\hline\n\\end{array}"
Since the formulas on each pair have the same values, they are logically equivalent.
Comments
Leave a comment