Show that ¬(p ⊕ q) and p ↔ q are logically equivalent
Let us show that ¬(p⊕q)¬(p ⊕ q)¬(p⊕q) and p↔qp ↔ qp↔q are logically equivalent using truth table:
pqp⊕q¬(p⊕q)p↔qFFFTTFTTFFTFTFFTTFTT\begin{array}{||c|c||c|c|c|} \hline \hline p & q & p\oplus q & \neg(p\oplus q) & p ↔ q\\ \hline \hline F & F & F & T & T\\ \hline F & T & T & F & F\\ \hline T & F & T & F & F\\ \hline T & T & F & T & T\\ \hline \hline \end{array}pFFTTqFTFTp⊕qFTTF¬(p⊕q)TFFTp↔qTFFT
Since the formulas on each pair have the same values, they are logically equivalent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments