Construct a truth table for each of these compound propositions.
a) p ∧ ¬p
b) p ∨ ¬p
c) (p ∨ ¬q) → q
d) (p ∨ q) → (p ∧ q)
e) (p → q) ↔ (¬q → ¬p)
f) (p → q) → (q → p)
Given:
a)"\\ p \\wedge \\lnot p"
b)"\\ p \\lor\\lnot p"
Answer:
"\\begin{array}{ |c| c| c|c |}\n \\hline\np &\\lnot p & p \\wedge\\lnot p& p \\lor\\lnot p \\\\ \n \\hline\n0 & 1 & 0&1\\\\ \n \\hline\n 1 & 0 & 0&1 \\\\ \n \\hline \n\\end{array}"
c) "(p \\lor\\lnot q) \\to q"
d) "(p \\lor q) \\to (p \\wedge q)"
e) "(p \\to q) \\leftrightarrow (\\lnot q \\to \\lnot p)"
f) "(p \\to q) \\to (q \\to p)"
Answer:
"\\begin{array}{ |c| c| c|c |c|c|c|c|c|c|c|c|c|c|}\n \\hline\np &q & \\lnot p &\\lnot q & p \\lor\\lnot q&(p \\lor\\lnot q) \\to q & p \\lor q& p \\wedge q & (p \\lor q) \\to (p \\wedge q) &p\\to q&\\lnot q \\to \\lnot p&q\\to p&(p \\to q) \\leftrightarrow (\\lnot q \\to \\lnot p)&(p \\to q) \\to (q \\to p)\\\\ \n \\hline\n0 & 0 & 1&1&1&0&0&0&1&1&1&1&1&1\\\\ \n \\hline\n 0 & 1 & 1&0&0&1&1&0&0&1&1&0&1&0 \\\\ \n \\hline\n 1 & 0 & 0&1&1&0&1&0&0&0&0&1&1&1\\\\ \n \\hline\n 1 & 1 & 0&0&1&1&1&1&1&1&1&1&1&1 \\\\ \n \\hline\n\n\\end{array}"
Comments
Leave a comment