(¬p→r) ∧ (q ↔p)
(¬p→r)∧(q↔p)=(p↔q)∧(¬p→r)(\lnot p\rightarrow r)\land (q\leftrightarrow p)=(p\leftrightarrow q)\land(\lnot p\rightarrow r)(¬p→r)∧(q↔p)=(p↔q)∧(¬p→r)
Now,
(p↔q)=(p∧q)∨(¬p∧¬q)(p\leftrightarrow q)=(p\land q)\lor (\lnot p\land \lnot q)(p↔q)=(p∧q)∨(¬p∧¬q)
(¬p→r)=(p∨r)(\lnot p\rightarrow r)=(p\lor r)(¬p→r)=(p∨r)
So,
(p↔q)∧(¬p→r)=(p∨r)∧(p∨¬q)∧(q∨¬p)(p\leftrightarrow q)\land(\lnot p\rightarrow r)=(p\lor r)\land (p\lor \lnot q)\land(q\lor \lnot p)(p↔q)∧(¬p→r)=(p∨r)∧(p∨¬q)∧(q∨¬p)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments