Find all combinations of truth values for p, q and r for which the statement ¬p ↔ (q ∧ ¬(p → r)) is true
Let's compose a truth table:
Then the statement ¬p ↔ (q ∧ ¬(p → r)) is true if(p=True, q=r=False); (p=r=True,q=False); (p=q=r=True)\left( {p = True,\,\,q = r = False} \right);\,\,\,\left( {p = r = True,q = False} \right);\,\,\left( {p = q = r = True} \right)(p=True,q=r=False);(p=r=True,q=False);(p=q=r=True)
Answer: (p=True, q=r=False); (p=r=True,q=False); (p=q=r=True)\left( {p = True,\,\,q = r = False} \right);\,\,\,\left( {p = r = True,q = False} \right);\,\,\left( {p = q = r = True} \right)(p=True,q=r=False);(p=r=True,q=False);(p=q=r=True)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment