a) Show that the following logical equivalences hold for the Peirce arrow↓, where
P ↓Q = ~ (P ∨ Q).
P ∨ Q = (P ↓ Q) ↓ (P ↓ Q)
P ∧ Q= (P ↓ P) ↓ (Q ↓ Q)
b) Show that for the Shuffer stroke |
P ∧ Q = (P | Q) | (P | Q)
c) Use the result from (b) and example 2.4.7 from book to write P ∧ (∼Q ∨ R) using only
Shuffer strokes
(a) By the definition of piece arrow-
"P\\downarrow Q=" ~"(P\\lor Q)"
"P\\downarrow Q" =~"(P\\lor P)"
We have derived that "P\\downarrow P" is logically equivalent with ~P
~"P=P\\downarrow P"
(b)"(P\\downarrow Q)\\downarrow (P\\downarrow Q)" =(~("P\\lor Q))\\downarrow" (~"(P\\lor Q)"
"=(P\\lor Q)\\land (P\\lor Q)\\\\\n\n =P\\lor Q"
(c)"(P\\downarrow P)\\downarrow (Q\\downarrow Q)" =(~("P\\lor P))\\downarrow" (~("Q\\lor Q))"
"=(P\\lor P)\\land (Q\\lor Q)\\\\\n\n =P\\land Q"
Comments
Leave a comment