Question #178168

V. Determine whether each pair of propositions are logically equivalent or not. Use Logical Equivalence Rules.

  1. ¬(p∨(¬p∧q)) and ¬p∧¬q
  2. ¬(p↔q) and p↔¬q
  3. p↔(q∧r) and (p↔q)∧(p↔r)
  4. ¬(p↔q) and p⊕q
1
Expert's answer
2021-04-13T13:42:36-0400

Let us determine whether each pair of propositions are logically equivalent or not. 


1) Since ¬(p(¬pq))=¬((p¬p)(pq)))=¬(T(pq))=¬(pq)=¬p¬q¬(p∨(¬p∧q))=¬((p∨¬p)∧(p\lor q)))=¬(T∧(p\lor q))=¬(p\lor q)=¬p\land ¬q, we conclude that ¬(p(¬pq))¬(p∨(¬p∧q)) and ¬p¬q¬p∧¬q are logically equivalent.


2) Since ¬(pq)=¬((pq)(qp))=¬((¬pq)(¬qp))=¬(¬pq)¬(¬qp)=(p¬q)(q¬p)=(pq)(¬q¬p)=(¬qp)(p¬q)=p¬q¬(p↔q)=¬((p\to q)\land (q\to p))=¬((\neg p\lor q)\land (\neg q\lor p))= ¬(\neg p\lor q)\lor\neg (\neg q\lor p)=(p\land\neg q)\lor (q\land \neg p)=(p\lor q)\land (\neg q\lor\neg p)= (\neg q\to p)\land (p\to\neg q)=p↔\neg q, we conclude that ¬(pq)¬(p↔q) and p¬qp↔¬q are logically equivalent.


3) Since for p=r=0, q=1p=r=0, \ q=1 we have that p(qr)=F(TF)=FF=Tp↔(q∧r)=F↔(T∧F)=F↔F=T but (pq)(pr)=(FT)(FF)=FT=F(p↔q)∧(p↔r)=(F↔T)∧(F↔F)=F\land T=F, we conclude that the formulas are not logically equivalent.


4) Since ¬(pq)=¬((pq)(qp))=¬((¬pq)(¬qp))=¬(¬(p¬q)¬(q¬p))=(p(q1)1)(q(p1)1)1=(pqp1)(qpq1)1=pqpqpqpqpqppqq11=pq,¬(p↔q) = ¬((p\to q)\land (q\to p))= ¬((\neg p\lor q)\land (\neg q\lor p))= ¬(\neg( p\land \neg q)\land \neg( q\land \neg p))= (p(q\oplus 1)\oplus 1)(q(p\oplus 1)\oplus 1)\oplus 1= (pq\oplus p\oplus 1)(qp\oplus q\oplus 1)\oplus 1=pq\oplus pq \oplus pq \oplus pq \oplus pq \oplus p\oplus pq\oplus q \oplus 1\oplus 1=p\oplus q,

we conclude that the formulas ¬(pq)¬(p↔q) and pqp⊕q are logically equivalent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS