V. Determine whether each pair of propositions are logically equivalent or not. Use Logical Equivalence Rules.
Let us determine whether each pair of propositions are logically equivalent or not.
1) Since "\u00ac(p\u2228(\u00acp\u2227q))=\u00ac((p\u2228\u00acp)\u2227(p\\lor q)))=\u00ac(T\u2227(p\\lor q))=\u00ac(p\\lor q)=\u00acp\\land \u00acq", we conclude that "\u00ac(p\u2228(\u00acp\u2227q))" and "\u00acp\u2227\u00acq" are logically equivalent.
2) Since "\u00ac(p\u2194q)=\u00ac((p\\to q)\\land (q\\to p))=\u00ac((\\neg p\\lor q)\\land (\\neg q\\lor p))=\n\u00ac(\\neg p\\lor q)\\lor\\neg (\\neg q\\lor p)=(p\\land\\neg q)\\lor (q\\land \\neg p)=(p\\lor q)\\land (\\neg q\\lor\\neg p)=\n(\\neg q\\to p)\\land (p\\to\\neg q)=p\u2194\\neg q", we conclude that "\u00ac(p\u2194q)" and "p\u2194\u00acq" are logically equivalent.
3) Since for "p=r=0, \\ q=1" we have that "p\u2194(q\u2227r)=F\u2194(T\u2227F)=F\u2194F=T" but "(p\u2194q)\u2227(p\u2194r)=(F\u2194T)\u2227(F\u2194F)=F\\land T=F", we conclude that the formulas are not logically equivalent.
4) Since "\u00ac(p\u2194q) = \u00ac((p\\to q)\\land (q\\to p))= \u00ac((\\neg p\\lor q)\\land (\\neg q\\lor p))=\n \u00ac(\\neg( p\\land \\neg q)\\land \\neg( q\\land \\neg p))=\n(p(q\\oplus 1)\\oplus 1)(q(p\\oplus 1)\\oplus 1)\\oplus 1=\n(pq\\oplus p\\oplus 1)(qp\\oplus q\\oplus 1)\\oplus 1=pq\\oplus pq \\oplus pq \\oplus pq \\oplus pq \\oplus p\\oplus pq\\oplus q \\oplus 1\\oplus 1=p\\oplus q,"
we conclude that the formulas "\u00ac(p\u2194q)" and "p\u2295q" are logically equivalent.
Comments
Leave a comment