Question #174473

In a class of 32 students, 18 offers chemistry, 16 offers Physics 22 offer Mathematics. 6 offer all three subjects, 3 offer Chemistry and Physics only and 5 offer only physics only. Each student offers at least one subject. Find the number of student who offer A. chemistry only B. only one student C. only two subjects


1
Expert's answer
2021-03-24T08:01:20-0400
N(PCM)=32N(P\cup C\cup M)=32

N(P)=16,P(C)=18,P(M)=22N(P)=16, P(C)=18, P(M)=22


N(PCM)=6N(P\cap C\cap M)=6

N(PCMC)=3N(P\cap C \cap M^C)=3

N(PCCMC)=5N(P\cap C^C \cap M^C)=5

N(PMCC)=N(P)N(PCM)N(P\cap M \cap C^C)=N(P)-N(P\cap C\cap M)-

N(PCMC)N(PCCMC)-N(P\cap C \cap M^C)-N(P\cap C^C \cap M^C)

=16635=2=16-6-3-5=2

N(PCM)=N(P)+N(M)+N(C)N(P\cup C\cup M)=N(P)+N(M)+N(C)

N(PMCC)N(PCMC)-N(P\cap M \cap C^C)-N(P\cap C \cap M^C)-

N(CMPC)2N(PCM)-N(C\cap M \cap P^C)-2N(P\cap C\cap M)

N(CMPC)=16+18+22N(C\cap M \cap P^C)=16+18+22

32322(6)=7-32-3-2-2(6)=7


A. N(CPCMC)=2N(C\cap P^C\cap M^C)=2


B. N(only one subject)=5+2+7=14N(\text{only one subject})=5+2+7=14


C. N(only two subjects)=3+2+7=12N(\text{only two subjects})=3+2+7=12



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS