Solution.
Q1.
a)
i)
U={x:x∈Z,1≤x≤12}={1,2,3,4,5,6,7,8,9,10,11,12},A={2x:x∈Uand x is a multiple of 4}={8,16,24},B={x:x∈U,xdivides 2}={2,4,6,8,10,12},C={x:x∈U,x2≤16}={1,2,3,4}.
ii)
A={1,2,3,4,5,6,7,9,10,11,12},A∩B={2,4,6,10,12},C−(A∩B)={1,3}.
iii)
C={5,6,7,8,9,10,11,12},B⊕C={2,4,5,7,9,11}.
b)
1+5+9+…+(4n–3)=n(2n–1)for all n≥1.
Let
P(n):1+5+9+...+(4n−3)=n(2n−1),for all n≥1.P(1):1=1(2⋅1−1),1=1,which is true.P(1)is true.Assume that P(n) is true for n=k.P(k):1+5+9+...+(4k−3)=k(2k−1) is true.Prove P(k+1) is true.P(k+1):1+5+9+...+(4k−3)+4(k+1)−3==k(2k−1)+4(k+1)−3=2k2−k+4k+4−3==2k2+3k+1=2k2+2k+k+1=(k+1)(2k+1)==(k+1)(2k+1+1−1)=(k+1)(2(k+1)−1).So, P(k+1) is true, whenever P(k) is true, hence P(n)is true.
c)
x=866 and y=732.
i)
866=2⋅433,732=2⋅2⋅3⋅61=22⋅3⋅61,
from here the greatest common divisor of x and y is 2.
GCD(866,732)=2.
ax+by=−71⋅866+84⋅732=2.
ii)
866=2⋅433,732=2⋅2⋅3⋅61=22⋅3⋅61,
from here LCM(866,732)=2⋅433⋅2⋅3⋅61=361956.
Comments