Question #173539

8. a) Find the generating function of the recurrence an = 6an−1 −5an−2 +1 with initial

conditions a0 = 2,a1 = 5.


1
Expert's answer
2021-04-29T17:32:26-0400

We will look for a generating function in the form

G(z)=n=0anznG(z) = \sum\limits_{n = 0}^\infty {{a_n}} {z^n}

1a0=12=21 \cdot {a_0} = 1 \cdot 2 = 2

za1=5zz \cdot {a_1} = 5z

.........

znan=(6an15an2+1)zn{z^n}{a_n} = \left( {6{a_{n - 1}} - 5{a_{n - 2}} + 1} \right){z^n}

Then

G(z)=n=0anzn=a0+a1z+n=2anzn=2+5z+n=2(6an15an2+1)zn=2+5z+6n=2an1zn5n=2an2zn+n=2znG(z) = \sum\limits_{n = 0}^\infty {{a_n}} {z^n}={a_0} + {a_1}z + \sum\limits_{n = 2}^\infty {{a_n}} {z^n} = 2 + 5z + \sum\limits_{n = 2}^\infty {\left( {6{a_{n - 1}} - 5{a_{n - 2}} + 1} \right){z^n}} = 2 + 5z + 6\sum\limits_{n = 2}^\infty {{a_{n - 1}}{z^n}} - 5\sum\limits_{n = 2}^\infty {{a_{n - 2}}{z^n}} + \sum\limits_{n = 2}^\infty {{z^n}}

Since

n=2an1zn=zn=2an1zn1=zn=1anzn=z(n=1anzn+a0a0)=z(n=0anzna0)=z(G(z)2)\sum\limits_{n = 2}^\infty {{a_{n - 1}}{z^n}} = z\sum\limits_{n = 2}^\infty {{a_{n - 1}}{z^{n - 1}}} = z\sum\limits_{n = 1}^\infty {{a_n}{z^n}} = z\left( {\sum\limits_{n = 1}^\infty {{a_n}{z^n}} + {a_0} - {a_0}} \right) = z\left( {\sum\limits_{n = 0}^\infty {{a_n}{z^n}} - {a_0}} \right) = z\left( {G(z) - 2} \right)

n=2an2zn=z2n=2an2zn2=z2n=0anzn=z2G(z)\sum\limits_{n = 2}^\infty {{a_{n - 2}}{z^n}} = {z^2}\sum\limits_{n = 2}^\infty {{a_{n - 2}}{z^{n - 2}}} = {z^2}\sum\limits_{n = 0}^\infty {{a_n}{z^n}} = {z^2}G(z)

n=2zn=n=2zn+z+1z1=n=0znz1=11zz1=1(z+1)(1z)1z=11+z21z=z21z\sum\limits_{n = 2}^\infty {{z^n}} = \sum\limits_{n = 2}^\infty {{z^n}} + z + 1 - z - 1 = \sum\limits_{n = 0}^\infty {{z^n}} - z - 1 = \frac{1}{{1 - z}} - z - 1 = \frac{{1 - (z + 1)(1 - z)}}{{1 - z}} = \frac{{1 - 1 + {z^2}}}{{1 - z}} = \frac{{{z^2}}}{{1 - z}}

then

G(z)=2+5z+6z(G(z)2)5z2G(z)+z21zG(z) = 2 + 5z + 6z(G(z) - 2) - 5{z^2}G(z) + \frac{{{z^2}}}{{1 - z}}

G(z)6zG(z)+5z2G(z)=2+5z12z+z21zG(z) - 6zG(z) + 5{z^2}G(z) = 2 + 5z - 12z + \frac{{{z^2}}}{{1 - z}}

G(z)(16z+5z2)=(27z)(1z)+z21zG(z)\left( {1 - 6z + 5{z^2}} \right) = \frac{{(2 - 7z)(1 - z) + {z^2}}}{{1 - z}}

G(z)=29z+8z2(1z)(16z+5z2)G(z) = \frac{{2 - 9z + 8{z^2}}}{{(1 - z)\left( {1 - 6z + 5{z^2}} \right)}}

Answer: G(z)=29z+8z2(1z)(16z+5z2)G(z) = \frac{{2 - 9z + 8{z^2}}}{{(1 - z)\left( {1 - 6z + 5{z^2}} \right)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS