Question #173533

5. a) Write the expression x1 ∨x2 ∧x3 ∨x4 in conjunction normal form and disjunctive

normal form


1
Expert's answer
2021-04-15T07:25:23-0400

Let's write the expression in conjunctive normal form:

x1x2x3x4=x1x4x2x3=(x1x2x4)(x1x3x4){x_1} \vee {x_2} \wedge {x_3} \vee {x_4} = {x_1} \vee {x_4} \vee {x_2} \wedge {x_3} = \left( {{x_1} \vee {x_2} \vee {x_4}} \right) \wedge \left( {{x_1} \vee {x_3} \vee {x_4}} \right)

x1,x2x3,x4{x_1},\,{x_2} \wedge {x_3},\,\,{x_4}\, are elementary conjunctions, so the expression is already written in disjunctive normal form: x1x2x3x4=x1(x2x3)x4{x_1} \vee {x_2} \wedge {x_3} \vee {x_4} = {x_1} \vee \left( {{x_2} \wedge {x_3}} \right) \vee {x_4}

Answer: CNF: (x1x2x4)(x1x3x4)\left( {{x_1} \vee {x_2} \vee {x_4}} \right) \wedge \left( {{x_1} \vee {x_3} \vee {x_4}} \right) , DNF: x1(x2x3)x4{x_1} \vee \left( {{x_2} \wedge {x_3}} \right) \vee {x_4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS