5. a) Write the expression x1 ∨x2 ∧x3 ∨x4 in conjunction normal form and disjunctive
normal form
Let's write the expression in conjunctive normal form:
"{x_1} \\vee {x_2} \\wedge {x_3} \\vee {x_4} = {x_1} \\vee {x_4} \\vee {x_2} \\wedge {x_3} = \\left( {{x_1} \\vee {x_2} \\vee {x_4}} \\right) \\wedge \\left( {{x_1} \\vee {x_3} \\vee {x_4}} \\right)"
"{x_1},\\,{x_2} \\wedge {x_3},\\,\\,{x_4}\\," are elementary conjunctions, so the expression is already written in disjunctive normal form: "{x_1} \\vee {x_2} \\wedge {x_3} \\vee {x_4} = {x_1} \\vee \\left( {{x_2} \\wedge {x_3}} \\right) \\vee {x_4}"
Answer: CNF: "\\left( {{x_1} \\vee {x_2} \\vee {x_4}} \\right) \\wedge \\left( {{x_1} \\vee {x_3} \\vee {x_4}} \\right)" , DNF: "{x_1} \\vee \\left( {{x_2} \\wedge {x_3}} \\right) \\vee {x_4}"
Comments
Leave a comment