Find the graph of the function f(n)=1-n from integers to integer
Given a mapping f:X→Y{\displaystyle f:X\to Y}f:X→Y, the graph of the mapping is the set
G(f)={(x,f(x))∣x∈X}⊂X×Y{\displaystyle G(f)=\{(x,f(x))\mid x\in X\}} \subset {\displaystyle X\times Y}G(f)={(x,f(x))∣x∈X}⊂X×Y.
Let us find the graph of the function f:Z→Zf:\mathbb Z\to\mathbb Zf:Z→Z, f(n)=1−nf(n)=1-nf(n)=1−n:
G(f)={(n,f(n))∣n∈Z}={(n,1−n)∣n∈Z}.G(f)=\{ (n,f(n)) \mid n\in \mathbb Z \} =\{ (n, 1-n) \mid n\in \mathbb Z \}.G(f)={(n,f(n))∣n∈Z}={(n,1−n)∣n∈Z}.
Let us sketch the garph:
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment