Use the properties to verify the logical equivalences in the following. Supply a reason for each
step.
a. (p ∧∼ q) ∨ p ≡ p
b. p ∧ (∼ q ∨ p) ≡ p
c. ∼ (p ∨∼ q) ∨ (∼ p ∧∼ q) ≡ ∼ p
d. ∼ ((∼ p ∧ q) ∨ (∼ p ∧∼ q)) ∨ (p ∧ q) ≡ p
e. (p ∧ (∼ (∼ p ∨ q))) ∨ (p ∧ q) ≡ p
a. "(p \\land \\sim q) \\lor p \\equiv" [By the Absorption law] "\\equiv (p \\land \\sim q) \\lor (p \\lor (p \\land q))\\equiv" [By the Associative and Commutative laws] "\\equiv ((p \\land \\sim q) \\lor (p \\land q)) \\lor p ) \\equiv" [By the Distributive law] "\\equiv ((p \\land (\\sim q \\lor q)) \\lor p)" "\\equiv" [By the Negation law] "\\equiv ((p \\land t) \\lor p)" "\\equiv" [By the Identity law] "\\equiv p \\lor p \\equiv" [By the Idempotent law] "\\equiv p"
b. "p \\land (\\sim q \\lor p) \\equiv" [By the Distributive law] "\\equiv (p \\land \\sim q)\\lor (p \\land p) \\equiv" [By the Idempotent law] "\\equiv (p \\land \\sim q)\\lor p \\equiv" [Equivalent to expression a.] "\\equiv p"
c. "\\sim (p \\lor \\sim q) \\lor (\\sim p \\land \\sim q) \\equiv" [By the De Morgan's law] "\\equiv \\sim (p \\lor \\sim q) \\lor \\sim (p \\lor q) \\equiv" [By the De Morgan's law] "\\equiv \\sim ((p \\lor \\sim q) \\land \\ (p \\lor q)) \\equiv" [By the Distributive law] "\\equiv \\sim (p \\lor (\\sim q \\land q)) \\equiv" [By the Negation law] "\\equiv \\sim (p \\lor c) \\equiv" [By the Identity law] "\\equiv \\sim p"
d. "\\sim ((\\sim p \\land q) \\lor (\\sim p \\land \\sim q)) \\lor (p \\land q) \\equiv" [By the Distributive law] "\\equiv" "\\sim (\\sim p \\land (q \\lor \\sim q)) \\lor (p \\land q) \\equiv" [By the Negation law] "\\equiv \\sim (\\sim p \\land t) \\lor (p \\land q) \\equiv" [By the Identity law] "\\equiv p \\lor (p \\land q) \\equiv" [By the Absorption law] "\\equiv p"
e. "( p \\land (\\sim (\\sim p \\lor q))) \\lor (p \\land q) \\equiv" [By the De Morgan's law] "\\equiv ( p \\land ( p \\land \\sim q)) \\lor (p \\land q) \\equiv" [By the Associative law] "\\equiv" "(( p \\land p) \\land \\sim q) \\lor (p \\land q) \\equiv" [By the Idempotent law] "\\equiv ( p \\land \\sim q) \\lor (p \\land q) \\equiv" [By the Distributive law] "\\equiv p \\land (\\sim q \\lor q) \\equiv" [By the Negation law] "\\equiv p \\land t" "\\equiv" [By the Identity law] "\\equiv p"
Comments
Leave a comment