a. (p∧∼q)∨p≡ [By the Absorption law] ≡(p∧∼q)∨(p∨(p∧q))≡ [By the Associative and Commutative laws] ≡((p∧∼q)∨(p∧q))∨p)≡ [By the Distributive law] ≡((p∧(∼q∨q))∨p) ≡ [By the Negation law] ≡((p∧t)∨p) ≡ [By the Identity law] ≡p∨p≡ [By the Idempotent law] ≡p
b. p∧(∼q∨p)≡ [By the Distributive law] ≡(p∧∼q)∨(p∧p)≡ [By the Idempotent law] ≡(p∧∼q)∨p≡ [Equivalent to expression a.] ≡p
c. ∼(p∨∼q)∨(∼p∧∼q)≡ [By the De Morgan's law] ≡∼(p∨∼q)∨∼(p∨q)≡ [By the De Morgan's law] ≡∼((p∨∼q)∧ (p∨q))≡ [By the Distributive law] ≡∼(p∨(∼q∧q))≡ [By the Negation law] ≡∼(p∨c)≡ [By the Identity law] ≡∼p
d. ∼((∼p∧q)∨(∼p∧∼q))∨(p∧q)≡ [By the Distributive law] ≡ ∼(∼p∧(q∨∼q))∨(p∧q)≡ [By the Negation law] ≡∼(∼p∧t)∨(p∧q)≡ [By the Identity law] ≡p∨(p∧q)≡ [By the Absorption law] ≡p
e. (p∧(∼(∼p∨q)))∨(p∧q)≡ [By the De Morgan's law] ≡(p∧(p∧∼q))∨(p∧q)≡ [By the Associative law] ≡ ((p∧p)∧∼q)∨(p∧q)≡ [By the Idempotent law] ≡(p∧∼q)∨(p∧q)≡ [By the Distributive law] ≡p∧(∼q∨q)≡ [By the Negation law] ≡p∧t ≡ [By the Identity law] ≡p
Comments