If p → q is false, can you determine the truth value of (~p)˅(p ↔ q)? Explain your answer.
If p → q is true, can you determine the truth value of ~(p → q)˄~p? Explain your answer.
Denote: "true = 1, false = 0".
1) If "p \\to q = 0 \\Longrightarrow p = 1", "q = 0".
Then "(\\thicksim p) = 0, p \\leftrightarrow q = 0, (\\thicksim p) \\lor (p \\leftrightarrow q) = 0 \\lor 0 = 0."
2) If "p \\to q = 1 \\Longrightarrow p = 1, q =1" or "p = 0, q = 0" or "p=0, q =1."
Then "\\thicksim (p \\to q) = 0, \\thicksim p = 1" or "\\thicksim p = 0".
If "\\thicksim p = 1 : \\thicksim (p \\to q) \\land \\thicksim p = 0 \\land 1 = 0;"
If "\\thicksim p = 0 : \\thicksim (p \\to q) \\land \\thicksim p = 0 \\land 0 = 0 \\Longrightarrow" No matter "\\thicksim p = 0" or "\\thicksim p = 1", the value of "\\thicksim (p \\to q) \\land \\thicksim p" is always 0.
Comments
Leave a comment