Denote: true=1,false=0.
1) If p→q=0⟹p=1, q=0.
Then (∼p)=0,p↔q=0,(∼p)∨(p↔q)=0∨0=0.
2) If p→q=1⟹p=1,q=1 or p=0,q=0 or p=0,q=1.
Then ∼(p→q)=0,∼p=1 or ∼p=0.
If ∼p=1:∼(p→q)∧∼p=0∧1=0;
If ∼p=0:∼(p→q)∧∼p=0∧0=0⟹ No matter ∼p=0 or ∼p=1, the value of ∼(p→q)∧∼p is always 0.
Comments