Find simpler statement forms that are logically equivalent to p ⊕ p and (p ⊕ p) ⊕ p.
b) Is (p ⊕ q) ⊕ r ≡ p ⊕ (q ⊕ r)? Justify your answer.
c) Is (p ⊕ q) ∧ r ≡ (p ∧ r) ⊕ (q ∧ r)? Justify your answer.
a) Let us find the truth table for "p \u2295 p" and "(p \u2295 p) \u2295 p:"
"\\begin{array}{|c|c|c|c|c|c|c|} \n\\hline\np & p\\oplus p & (p\\oplus p)\\oplus p \\\\\n\\hline\n0 & 0 & 0 \\\\\n\\hline\n1 & 0 & 1 \\\\\n\\hline\n\n\\end{array}"
It follows that "p \u2295 p\\equiv 0" and "(p \u2295 p) \u2295 p\\equiv p".
b) Let us find the truth table for "(p \u2295 q) \u2295 r" and "p \u2295 (q \u2295 r)":
"\\begin{array}{|c|c|c|c|c|c|c|} \n\\hline\np & q & r & p\\oplus q & (p\\oplus q)\\oplus r & q\\oplus r & p\\oplus (q\\oplus r)\\\\\n\\hline\n0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n\\hline\n0 & 0 & 1 & 0 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 0 & 1 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 1 & 1 & 0 & 0 & 0\\\\\n\\hline\n1 & 0 & 0 & 1 & 1 & 0 & 1\\\\\n\\hline\n1 & 0 & 1 & 1 & 0 & 1 & 0\\\\\n\\hline\n1 & 1 & 0 & 0 & 0 & 1 & 0\\\\\n\\hline\n1 & 1 & 1 & 0 & 1 & 0 & 1\\\\\n\\hline\n\\end{array}"
Since the formulas "(p \u2295 q) \u2295 r" and "p \u2295 (q \u2295 r)" have the same truth value in all cases, they are logically equivalent. It follows that "(p \u2295 q) \u2295 r \u2261 p \u2295 (q \u2295 r)."
c) Let us find the truth table for "(p \u2295 q) \u2227 r" and "(p \u2227 r) \u2295 (q \u2227 r)":
"\\begin{array}{|c|c|c|c|c|c|c|c|} \n\\hline\np & q & r & p\\oplus q & (p\\oplus q)\\land r & p\\land r & q\\land r &p\\land r\\oplus q\\land r\\\\\n\\hline\n0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n\\hline\n0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n\\hline\n0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\\\\\n\\hline\n0 & 1 & 1 & 1 & 1 & 0 & 1 & 1\\\\\n\\hline\n1 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\\\\n\\hline\n1 & 0 & 1 & 1 & 1 & 1 & 0 & 1\\\\\n\\hline\n1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n\\hline\n1 & 1 & 1 & 0 & 0 & 1 & 1 & 0\\\\\n\\hline\n\\end{array}"
Since the formulas "(p \u2295 q) \u2227 r" and "(p \u2227 r) \u2295 (q \u2227 r)" have the same truth value in all cases, they are logically equivalent. It follows that "(p \u2295 q) \u2227 r \u2261 (p \u2227 r) \u2295 (q \u2227 r)."
Comments
Leave a comment