A. List the members of the following sets
1. {x| x is real numbers and x2 = 1}
2. {x| x is an integer and -4 < x ≤ 3}
B. Use set builder notation to give description of each of these sets.
1. {a, e,i ,o, u}
2. {=2, -1, 0, 1, 2}
C. Let A= (a, b, c), B = (x, y) and C = (0, 1)
Find:
1. A U C
2. C x B
3. B – A
4. (A ∩ C) U B
D. Find these terms of the sequence (An}, where An = 2(3)n + 5
1. A0
2. A5
3. A3
4. 8th term
5. 2nd term
6. Sum of the sequence
E. Given the following set:
2. X = {-1, 0, 1, 2, 3, 4, 5} defined by the rule (x, y) ∈R if x ≤ y
F. List the elements of R
G. Find the domain of R
H. Find the range of R
I. Draw the digraph
J. Properties of the Relation
Solution.
A.
"\\{x| x \\text{ is real numbers and } x^2=1\\}=\\{-1,1\\}."
"\\{x| x \\text{ is an integer and } -4<x\\leq 3\\}=\\{-3,-2,-1,0,1,2,3\\}."
B.
"\\{a,e,i,o,u\\}=\\{x| x\\text{ is vowels letters, without 'y' }\\}."
"\\{-2,-1,0,1,2\\}=\\{x \\in Z| |x|=2\\}."
C.
"A=(a,b,c), B=(x,y), C=(0,1)."
"A \\text{U} C=\\{a,b,c,0,1\\}. \\newline\nC \\times B=\\{(0,x),(0,y),(1,x),(1,y)\\}. \\newline\nB-A=\\{x,y\\}. \\newline\n(A \\cap C)\\text{U} B=\\{x,y\\}."
D.
"A_n=2\\cdot 3^n+5. \\newline\nA_0=7. \\newline\nA_5=491. \\newline\nA_3=59. \\newline\nA_8=13127.\n\\newline\nA_2=23. \\newline\n\\sum A_n=\\infty."
E.
"X=\\{-1,0,1,2,3,4,5\\}. \\newline\nR=\\{(x,y)|x\\leq y\\}."
F.
"R=\\{(-1,0),(-1,1),(-1,2),(-1,3),(-1,4),(-1,5),\\newline\n(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),\\newline\n(2,5),(3,4),(3,5),(4,5),(5,5),(4,4),(3,3),(2,2),(1,1),(0,0),(-1,-1)\\}."
G.
Domain("R" )="\\{-1,0,1,2,3,4,5\\}."
H.
Range("R" )="\\{-1,0,1,2,3,4,5\\}."
I.
J.
Properties of the Relation:
Reflexivity
Irreflexivity
Symmetry
Antysymmetry
Asymmetry
Transitivity.
Comments
Leave a comment