Show that ~ (p → q) and p ∧~q are logically equivalent. (Hint: you can use a truth table to prove it or you apply De Morgan law to show the ~(p → q) is p ∧~q.
Here the truth table for "\\sim (p\\to q)" given below:
Table 1
Again truth table for "(p\\land \\sim q)" given below:
Table 2
Here we see from Table 1 and Table 2 , the truth table for "\\sim (p\\to q)" and "(p\\land \\sim q)" are equal.
Therefore "\\sim(p\\to q) \\equiv (p\\land \\sim q)"
Comments
Leave a comment