Find the sum of product expansion of the Boolean function f(x,y,z) = (x+z)y
"F(x,y,z)=(x+z)y"
To determine the sum of product expansion of "F", we could use boolean identities or construct a table that determines all values of "F". I will be using boolean identities.
"F(x,y,z)=(x+z)y"
"=xy+zy \\text{ (Distributive Law) }\\\\\n=xy.1+zy.1 \\text{ (Identity Law) }\\\\\n=xy(z+ \\bar{z})+zy(x+\\bar{x}) \\text{ (Unit Property) }\\\\\n=xyz+xy\\bar{z}+zyx+zy\\bar{x} \\text{(Distributive Law) }\\\\\n=xyz+xy\\bar{z}+xyz+\\bar{x}yz \\text{ (Commutative Law) }\\\\\n=xyz+xy\\bar{z}+\\bar{x}yz \\text{(Idempotent Law) }"
Comments
Leave a comment