Question #153335

Find the sum of product expansion of the Boolean function f(x,y,z) = (x+z)y


1
Expert's answer
2020-12-30T15:42:06-0500

F(x,y,z)=(x+z)yF(x,y,z)=(x+z)y

To determine the sum of product expansion of FF, we could use boolean identities or construct a table that determines all values of FF. I will be using boolean identities.


F(x,y,z)=(x+z)yF(x,y,z)=(x+z)y

=xy+zy (Distributive Law) =xy.1+zy.1 (Identity Law) =xy(z+zˉ)+zy(x+xˉ) (Unit Property) =xyz+xyzˉ+zyx+zyxˉ(Distributive Law) =xyz+xyzˉ+xyz+xˉyz (Commutative Law) =xyz+xyzˉ+xˉyz(Idempotent Law) =xy+zy \text{ (Distributive Law) }\\ =xy.1+zy.1 \text{ (Identity Law) }\\ =xy(z+ \bar{z})+zy(x+\bar{x}) \text{ (Unit Property) }\\ =xyz+xy\bar{z}+zyx+zy\bar{x} \text{(Distributive Law) }\\ =xyz+xy\bar{z}+xyz+\bar{x}yz \text{ (Commutative Law) }\\ =xyz+xy\bar{z}+\bar{x}yz \text{(Idempotent Law) }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS