Question #146301
Let A be a square matrix, and AT denotes the transpose of A. Show that the following hold true.
(a) (AT)T=A
(b) (A+B)T=AT+BT
(c) (AB)T=BT AT.
1
Expert's answer
2020-12-01T06:08:32-0500

Let A=[a11a12a1na21a22a2nan1an2ann]A=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right] and B=[b11b12b1nb21b22b2nbn1bn2bnn]B=\left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right].



(a) AT=[a11a21an1a12a22an2a1na2nann]A^T=\left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right] and (AT)T=[a11a12a1na21a22a2nan1an2ann]=A.(A^T)^T=\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]=A.



(b) (A+B)T=([a11a12a1na21a22a2nan1an2ann]+[b11b12b1nb21b22b2nbn1bn2bnn])T=(A+B)^T=\left(\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]+ \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right]\right)^T=


=[a11+b11a12+b12a1n+b1na21+b21a22+b22a2n+b2nan1+bn1an2+bn2ann+bnn]T==\left[ \begin{array}{cccc} a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2n}+b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1}+b_{n1} & a_{n2}+b_{n2} & \ldots & a_{nn}+b_{nn} \end{array} \right]^T=


=[a11+b11a21+b21an1+bn1a12+b12a22+b22an2+bn2a1n+b1na2n+b2nann+bnn]== \left[ \begin{array}{cccc} a_{11}+b_{11} & a_{21}+b_{21} & \ldots & a_{n1}+b_{n1}\\ a_{12}+b_{12} & a_{22}+b_{22} & \ldots & a_{n2}+b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n}+b_{1n} & a_{2n}+b_{2n} & \ldots & a_{nn}+b_{nn} \end{array} \right]=


=[a11a21an1a12a22an2a1na2nann]+[b11b21bn1b12b22bn2b1nb2nbnn]=AT+BT.=\left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right]+ \left[ \begin{array}{cccc} b_{11} & b_{21} & \ldots & b_{n1}\\ b_{12} & b_{22} & \ldots & b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ b_{1n} & b_{2n} & \ldots & b_{nn} \end{array} \right]=A^T+B^T.


(c) (AB)T=([a11a12a1na21a22a2nan1an2ann][b11b12b1nb21b22b2nbn1bn2bnn])T=(AB)^T=\left(\left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right]\cdot \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \ldots & \ldots & \ldots & \ldots\\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{array} \right]\right)^T=


=[a11b11++a1nbn1a11b12++a1nbn2a11b1n++a1nbnna21b11++a2nbn1a21b12++a2nbn2a21b1n++a2nbnnan1b11++annbn1an1b12++annbn2an1b1n++annbnn]T==\left[ \begin{array}{cccc} a_{11}b_{11}+\cdots+a_{1n}b_{n1} & a_{11}b_{12}+\cdots+a_{1n}b_{n2} & \ldots & a_{11}b_{1n}+\cdots+a_{1n}b_{nn}\\ a_{21}b_{11}+\cdots+a_{2n}b_{n1} & a_{21}b_{12}+\cdots+a_{2n}b_{n2} & \ldots & a_{21}b_{1n}+\cdots+a_{2n}b_{nn}\\ \ldots & \ldots & \ldots & \ldots\\ a_{n1}b_{11}+\cdots+a_{nn}b_{n1} & a_{n1}b_{12}+\cdots+a_{nn}b_{n2} & \ldots & a_{n1}b_{1n}+\cdots+a_{nn}b_{nn}\\ \end{array} \right]^T=


=[a11b11++a1nbn1a21b11++a2nbn1an1b11++annbn1a11b12++a1nbn2a21b12++a2nbn2an1b12++annbn2a11b1n++a1nbnna21b1n++a2nbnnan1b1n++annbnn]==\left[ \begin{array}{cccc} a_{11}b_{11}+\cdots+a_{1n}b_{n1} & a_{21}b_{11}+\cdots+a_{2n}b_{n1} & \ldots & a_{n1}b_{11}+\cdots+a_{nn}b_{n1}\\ a_{11}b_{12}+\cdots+a_{1n}b_{n2} & a_{21}b_{12}+\cdots+a_{2n}b_{n2} & \ldots & a_{n1}b_{12}+\cdots+a_{nn}b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{11}b_{1n}+\cdots+a_{1n}b_{nn} & a_{21}b_{1n}+\cdots+a_{2n}b_{nn} & \ldots & a_{n1}b_{1n}+\cdots+a_{nn}b_{nn}\\ \end{array} \right]=


=[b11b21bn1b12b22bn2b1nb2nbnn][a11a21an1a12a22an2a1na2nann]=BTAT.= \left[ \begin{array}{cccc} b_{11} & b_{21} & \ldots & b_{n1}\\ b_{12} & b_{22} & \ldots & b_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ b_{1n} & b_{2n} & \ldots & b_{nn} \end{array} \right] \cdot \left[ \begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{n1}\\ a_{12} & a_{22} & \ldots & a_{n2}\\ \ldots & \ldots & \ldots & \ldots\\ a_{1n} & a_{2n} & \ldots & a_{nn} \end{array} \right] =B^T A^T.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS