Let "A=\\left[\\begin{array}{cc} 1 & 1 \\\\ 0 & 1\\end{array}\\right]."
Let us prove by Mathematical Induction the following formula:
"A^n=\\left[\\begin{array}{cc} 1 & n \\\\ 0 & 1\\end{array}\\right]."
Base case:
"n=1:"
"A^1=\\left[\\begin{array}{cc} 1 & 1 \\\\ 0 & 1\\end{array}\\right]"
"n=2:"
"A^2=\\left[\\begin{array}{cc} 1 & 1 \\\\ 0 & 1\\end{array}\\right]\\cdot \\left[\\begin{array}{cc} 1 & 1 \\\\ 0 & 1\\end{array}\\right]=\\left[\\begin{array}{cc} 1 & 2 \\\\ 0 & 1\\end{array}\\right]"
Inductive step:
Assume that for "n=k" it is true that "A^k=\\left[\\begin{array}{cc} 1 & k \\\\ 0 & 1\\end{array}\\right]" and prove for "n=k+1:"
"A^{k+1}=A^k\\cdot A=\\left[\\begin{array}{cc} 1 & k \\\\ 0 & 1\\end{array}\\right]\\cdot\\left[\\begin{array}{cc} 1 & 1 \\\\ 0 & 1\\end{array}\\right]=\\left[\\begin{array}{cc} 1 & k+1 \\\\ 0 & 1\\end{array}\\right]"
Conclusion:
Therefore, by Mathematical Induction "A^n=\\left[\\begin{array}{cc} 1 & n \\\\ 0 & 1\\end{array}\\right]" for each "n \\in\\mathbb Z_+"
Comments
Leave a comment