Question #146300
Let A=[top(1 1) bottom (0 1)] be a matrix consisting of real numbers (we are not interpreting this as a bit matrix). Find a formula for An, where n ϵ Z+, and use Mathematical Induction to prove that your formula is correct.
1
Expert's answer
2020-12-01T05:47:49-0500

Let A=[1101].A=\left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right].


Let us prove by Mathematical Induction the following formula:


An=[1n01].A^n=\left[\begin{array}{cc} 1 & n \\ 0 & 1\end{array}\right].



Base case:


n=1:n=1:


A1=[1101]A^1=\left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right]

n=2:n=2:


A2=[1101][1101]=[1201]A^2=\left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right]\cdot \left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc} 1 & 2 \\ 0 & 1\end{array}\right]



Inductive step:

Assume that for n=kn=k it is true that Ak=[1k01]A^k=\left[\begin{array}{cc} 1 & k \\ 0 & 1\end{array}\right] and prove for n=k+1:n=k+1:


Ak+1=AkA=[1k01][1101]=[1k+101]A^{k+1}=A^k\cdot A=\left[\begin{array}{cc} 1 & k \\ 0 & 1\end{array}\right]\cdot\left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc} 1 & k+1 \\ 0 & 1\end{array}\right]



Conclusion:

Therefore, by Mathematical Induction An=[1n01]A^n=\left[\begin{array}{cc} 1 & n \\ 0 & 1\end{array}\right] for each nZ+n \in\mathbb Z_+



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS