Let us denote Sn = an + bn + cn for arbitrary numbers a, b, c.
It is known that S1 = 8, S2 = 66, S3 = 536 for some values of
a, b, c. What is the smallest possible value of S242 — S41 S43?
1
Expert's answer
2020-11-30T21:03:23-0500
S422−S41∗S43=(a42+b42+c42)2−(a41+b41+c41)∗(a43+b43+c43)=a84+b84+c84+2a42b42+2a42c42++2b42c42−a84−b84−c84−a41(b43+c43)−−b41(a43+c43)−c41(a43+b43)==2a42b42+2a42c42+2b42c42−a41(b43+c43)−−b41(a43+c43)−c41(a43+b43)⎩⎨⎧a+b+c=8a2+b2+c2=66a3+b3+c3=536since the system is symmetric there will be only one solutions:⎩⎨⎧c=8−a−ba2+b2+c2=66a3+b3+c3=536{a2+b2+64+a2+b2−16a−16b−2ab=66a3+b3+c3=536{2a2+2b2−16a−16b−2ab=2a3+b3+512−192(a+b)+24(a+b)2−(a+b)3=536a=0,b=4−17,c=4+172(4−17)42(4+17)42−−(4−17)41(4+17)43−−(4+17)41(4−17)43==−(4−17)41(4+17)41∗∗((4−17)2+2(4−17)(4+17)+(4+17)2)==−(16−17)41∗(64)=−(−1)41∗(64)=64answer:64
Comments
Leave a comment