We shall use x for negation of x. Let us obtain DNF for p→(q∧r) :
p→(q∧r)=p∨(q∧r)=(p∨q)∧(p∨r)=(p∨q)∨(p∨r)=(p∧q)∨(p∧r)
Therefore, (p∧q)∨(p∧r) is DNF for p→(q∧r) .
Let us obtain PCNF for (p→q)∧(q∨r):
(p→q)∧(q∨r)=(p∨q)∧(q∨r)=(p∨q∨(r∧r))∧((p∧p)∨q∨r)=
=(p∨q∨r)∧(p∨q∨r)∧(p∨q∨r)∧(p∨q∨r)=
=(p∨q∨r)∧(p∨q∨r)∧(p∨q∨r)
Consequently, (p∨q∨r)∧(p∨q∨r)∧(p∨q∨r) is PCNF for (p→q)∧(q∨r).
Comments
Leave a comment