Question #144936
PDNF of p->((p->q)^~(~qv~p))
1
Expert's answer
2020-11-18T18:39:34-0500

Transform the expression:

P((PQ)¬(¬Q¬P))P \to ((P \to Q) \land \lnot(\lnot Q \lor \lnot P))

Expressing the conditional using logical-or and using De Morgan's law:

P((¬PQ)QP)P \to ((\lnot P \lor Q) \land Q \land P)

Using the absorbtion law:

P(QP)P \to (Q \land P)

Expressing the conditional using the logical or:

¬P(QP)\lnot P \lor (Q \land P)

Using the distibutive law:

(¬PQ)(¬PP)(\lnot P \lor Q) \land (\lnot P \lor P)

(¬PQ)T(\lnot P \lor Q) \land T

¬PQ\lnot P \lor Q

Make a truth table:

P    Q     ¬PQP \ \ \ \ Q \ \ \ \ \ \lnot P \lor Q

F    F     TF \ \ \ \ F \ \ \ \ \ T

F    T     TF \ \ \ \ T \ \ \ \ \ T

T    F     FT \ \ \ \ F \ \ \ \ \ F

T    T     TT \ \ \ \ T \ \ \ \ \ T

For the rows that have the expression true do the following to obtain the PDNF:

For each row right down all the variables in the expression, if the variable has False value in this row, negate it. Make a conjunction of these terms.

Each such conjuction unite in the complete expression using a disjunction.

For the required expression there are 3 such conjunctions:

(PQ)(P∧Q)

(¬PQ)(¬P∧Q)

(¬P¬Q)(¬P∧¬Q)

Therefore, the PDNF is:

(PQ)(¬PQ)(¬P¬Q)(P∧Q)∨(¬P∧Q)∨(¬P∧¬Q)


Answer: (PQ)(¬PQ)(¬P¬Q)(P∧Q)∨(¬P∧Q)∨(¬P∧¬Q)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS