Let us give a proof of the Binomial Theorem using mathematical induction. We will need to use Pascal's identity in the form:
"\\left(\\begin{array}{c}n\\\\r-1\\end{array}\\right)+\\left(\\begin{array}{c}n\\\\r\\end{array}\\right)=\\left(\\begin{array}{c}n+1\\\\r\\end{array}\\right)" for "0<r\\le n".
We aim to prove that
"(a+b)^n=a^n+\\left(\\begin{array}{c}n\\\\1\\end{array}\\right)a^{n\u22121}b+\\left(\\begin{array}{c}n\\\\2\\end{array}\\right)a^{n\u22122}b^2+\u22ef+\\left(\\begin{array}{c}n\\\\r\\end{array}\\right)a^{n\u2212r}b^r +\u22ef+\\left(\\begin{array}{c}n\\\\n-1\\end{array}\\right)ab^{n\u22121}+ b^n."
We first note that the result is true for n=1 and n=2: "(a+b)^1=a+b" and "(a+b)^2=a^2+2ab+b^2=a^2+\\left(\\begin{array}{c}2\\\\1\\end{array}\\right)ab+b^2".
Let "k" be a positive integer with "k\u22652" for which the statement is true. So
"(a+b)^k=a^k+\\left(\\begin{array}{c}k\\\\1\\end{array}\\right)a^{k\u22121}b+\\left(\\begin{array}{c}k\\\\2\\end{array}\\right)a^{k\u22122}b^2+\u22ef+\\left(\\begin{array}{c}k\\\\r\\end{array}\\right)a^{k\u2212r}b^r +\u22ef+\\left(\\begin{array}{c}k\\\\k-1\\end{array}\\right)ab^{k\u22121}+ b^k"
Now consider the expansion
"(a+b)^{k+1}=(a+b)(a+b)^k="
"=(a+b)(a^k+\\left(\\begin{array}{c}k\\\\1\\end{array}\\right)a^{k\u22121}b+\\left(\\begin{array}{c}k\\\\2\\end{array}\\right)a^{k\u22122}b^2+\u22ef+\\left(\\begin{array}{c}k\\\\r\\end{array}\\right)a^{k\u2212r}b^r +\u22ef+\\left(\\begin{array}{c}k\\\\k-1\\end{array}\\right)ab^{k\u22121}+ b^k)="
"=a^{k+1}+\\left[1+\\left(\\begin{array}{c}k\\\\1\\end{array}\\right)\\right]a^{k}b+\\left[\\left(\\begin{array}{c}k\\\\1\\end{array}\\right)+\\left(\\begin{array}{c}k\\\\2\\end{array}\\right)\\right]a^{k\u22121}b^2+\u22ef+\\left[\\left(\\begin{array}{c}k\\\\r-1\\end{array}\\right)+\\left(\\begin{array}{c}k\\\\r\\end{array}\\right)\\right]a^{k+1\u2212r}b^r +\u22ef+\\left[\\left(\\begin{array}{c}k\\\\k-1\\end{array}\\right)+1\\right]ab^{k}+ b^{k+1}"
From Pascal's identity, it follows that
"(a+b)^{k+1}=a^{k+1}+\\left(\\begin{array}{c}k+1\\\\1\\end{array}\\right)a^{k}b+\\left(\\begin{array}{c}k+1\\\\2\\end{array}\\right)a^{k\u22121}b^2+\u22ef+\\left(\\begin{array}{c}k+1\\\\r\\end{array}\\right)a^{k+1\u2212r}b^r +\u22ef+\\left(\\begin{array}{c}k+1\\\\k\\end{array}\\right)ab^{k}+ b^{k+1}"
Hence the result is true for "k+1". By induction, the result is true for all positive integers "n".
Comments
Leave a comment