After complete expansion of (x+y)150(x+y)^{150}(x+y)150 we will get terms:
k0x150,k1x149y1,k2x148y2,...,knx150−nyn,...,k149x1y149,k150y150k_{0}x^{150}, k_{1}x^{149}y^1, k_{2}x^{148}y^2,..., k_{n}x^{150-n}y^{n},..., k_{149}x^{1}y^{149},k_{150}y^{150}k0x150,k1x149y1,k2x148y2,...,knx150−nyn,...,k149x1y149,k150y150
Total count of terms will be 151.
Due to formula of binomial theorem
kn=(150n)=150!n!(150−n)!k_{n}=\binom{150}{n}=\frac{150!}{n!(150-n)!}kn=(n150)=n!(150−n)!150!
n=0,1,2,...,150n=0, 1, 2, ..., 150n=0,1,2,...,150
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments