This committe must consist of 6 dogs or 5 dogs and 1 cat or 4 dogs and 2 cats. The number of ways of choosing "k" elements from "n" elements is equal to "\\left(\\begin{array}{c}n\\\\k\\end{array}\\right)=\\frac{n!}{k!(n-k)!}"
Therefore, using combinatorial Sum and Product Rules we have that the number of ways to form a committee is
"\\left(\\begin{array}{c}15\\\\6\\end{array}\\right)+\\left(\\begin{array}{c}15\\\\5\\end{array}\\right)\\left(\\begin{array}{c}10\\\\1\\end{array}\\right)+\\left(\\begin{array}{c}15\\\\4\\end{array}\\right)\\left(\\begin{array}{c}10\\\\2\\end{array}\\right)="
"=\\frac{15!}{6!(9)!}+\\frac{15!}{5!(10)!}10+\\frac{15!}{4!(11)!}\\frac{10!}{2!(8)!}=\\frac{15\\cdot14\\cdot13\\cdot12\\cdot11\\cdot10}{6\\cdot5\\cdot4\\cdot3\\cdot2}+\n\\frac{15\\cdot14\\cdot13\\cdot12\\cdot11}{5\\cdot4\\cdot3\\cdot2}10+\n\\frac{15\\cdot14\\cdot13\\cdot12}{4\\cdot3\\cdot2}\\frac{10\\cdot9}{2}="
"=5,005+30,030+61,425=96,460"
Answer: "96,460"
Comments
Leave a comment