Assume that a class consists only of students residing the 50 US states. Find the smallest number of students that must be enrolled in a class to guarantee that there are at least 5 students from the same state
1
Expert's answer
2020-11-15T18:29:08-0500
If a class contains 4 students from each state, then there are 4•50=200 all such students. Then by Pigeonhole principle, to guarantee that there are at least 5 students from the same state the smallest number of students that must be enrolled in a class is 200+1=201.
Learn more about our help with Assignments: Discrete Math
Comments
Shubhang Mehrotra
06.11.20, 16:47
Using PigionHole Principle, with the number of students as 'x', and
number of states as 'holes' = 50. CEIL(x/50) = 5 Since, CEIL(200/50) =
4. CEIL(201/50) = 5. Therefore, the Minimum number of students = 201.
Leave a comment
Thank you! Your comments have been successfully added. However, they need to be checked by the moderator before being published.
Comments
Using PigionHole Principle, with the number of students as 'x', and number of states as 'holes' = 50. CEIL(x/50) = 5 Since, CEIL(200/50) = 4. CEIL(201/50) = 5. Therefore, the Minimum number of students = 201.
Leave a comment