Question #140818
Consider following relation on set (1, 2, 3, 4, 5, 6}
R= {(i,j) | |i-j|=2}
Is R transitive?
Is R reflexive?
Is R symmetric?
1
Expert's answer
2020-11-02T19:31:58-0500

R=001000000100100010010001001000000100R= \begin{vmatrix} 0 & 0&1&0&0&0 \\ 0&0&0&1&0&0\\ 1&0&0&0&1&0\\ 0&1&0&0&0&1\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0 \end{vmatrix}

a,b,c:aRbbRc    ¬(aRc)\forall a,b,c :aRb\land bRc \implies \neg (aRc)

Antitransitive

x:¬(xRx)\forall x: \neg(xRx)

Antireflexive

a,b:aRb    bRa\forall a,b: aRb\implies bRa

Symmetric



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS