"R = \\{(a,c), (b,d), (c,a), (c,e), (d,b), (d,f), (e,c), (f,d)\\}"
Here are the steps of the Warshall’s algorithm:
Step 1. Assign initial values "W=M_R, k=0".
Step 2. Execute "k:=k+1."
Step 3. For all "i\\ne k" such that "w_{ik}=1", and for "j" execute the operation "w_{ij}=w_{ij}\\lor w_{kj}."
Step 4. If "k=n", then stop: we have the solution "W=M_{R^*}", else go to the step 2.
"n=|A|=6."
"W^{(0)}=M_R=\\left(\\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\\\ 0 & 0 & 0 & 1 & 0 & 0\\\\ 1 & 0 & 0 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0\\end{array}\\right)"
"W^{(1)}=\\left(\\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\\\ 0 & 0 & 0 & 1 & 0 & 0\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0\\end{array}\\right)"
"W^{(2)}=\\left(\\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\\\ 0 & 0 & 0 & 1 & 0 & 0\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0\\end{array}\\right)"
"W^{(3)}=\\left(\\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\\\ 0 & 0 & 0 & 1 & 0 & 0\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0\\end{array}\\right)"
"W^{(4)}=\\left(\\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\\\ 0 & 1 & 0 & 1 & 0 & 1\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1\\end{array}\\right)"
"W^{(5)}=\\left(\\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\\\ 0 & 1 & 0 & 1 & 0 & 1\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1\\end{array}\\right)"
"M_{R^*}=W^{(6)}=\\left(\\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\\\ 0 & 1 & 0 & 1 & 0 & 1\\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1\\end{array}\\right)"
Therefore, the transitive closure of "R" is the following:
"R^* = \\{(a,a),(a,c),(a,e), (b,b),(b,d),(b,f), (c,a),(c,c), (c,e), (d,b),(d,d),"
"(d,f),(e,a), (e,c),(e,e),(f,b), (f,d),(f,f) \\}"
Comments
Leave a comment