Question #140334
What is the coefficient of x^3 y^13 in the expansion of (−1x+2y)^16?
1
Expert's answer
2020-11-04T16:42:46-0500

According to Newton's Binomial Theorem:


(a+b)n=k=0nn!k!(nk)!akbnk(a+b)^n=\sum_{k=0}^n \frac{n!}{k!(n-k)!}a^kb^{n-k}


In our case a=1x,b=2y,n=16,k=3,nk=13.a=-1x, b= 2y, n=16, k=3,n-k=13.


Therefore, the coefficient of x3y13x^3 y^{13} is


16!3!13!(1)3213=16151413!3!13!213=1615146213=\frac{16!}{3!13!}(-1)^32^{13}=-\frac{16\cdot 15\cdot 14\cdot 13!}{3!13!}2^{13}=-\frac{16\cdot 15\cdot 14\cdot }{6}2^{13}=


=8514213=57217=4,587,520=-8\cdot 5\cdot 14\cdot 2^{13}=-5\cdot 7\cdot 2^{17}=-4,587,520



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS