According to Newton's Binomial Theorem:
(a+b)n=∑k=0nn!k!(n−k)!akbn−k(a+b)^n=\sum_{k=0}^n \frac{n!}{k!(n-k)!}a^kb^{n-k}(a+b)n=∑k=0nk!(n−k)!n!akbn−k
In our case a=−1x,b=2y,n=16,k=3,n−k=13.a=-1x, b= 2y, n=16, k=3,n-k=13.a=−1x,b=2y,n=16,k=3,n−k=13.
Therefore, the coefficient of x3y13x^3 y^{13}x3y13 is
16!3!13!(−1)3213=−16⋅15⋅14⋅13!3!13!213=−16⋅15⋅14⋅6213=\frac{16!}{3!13!}(-1)^32^{13}=-\frac{16\cdot 15\cdot 14\cdot 13!}{3!13!}2^{13}=-\frac{16\cdot 15\cdot 14\cdot }{6}2^{13}=3!13!16!(−1)3213=−3!13!16⋅15⋅14⋅13!213=−616⋅15⋅14⋅213=
=−8⋅5⋅14⋅213=−5⋅7⋅217=−4,587,520=-8\cdot 5\cdot 14\cdot 2^{13}=-5\cdot 7\cdot 2^{17}=-4,587,520=−8⋅5⋅14⋅213=−5⋅7⋅217=−4,587,520
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments