According to Newton's Binomial Theorem:
"(a+b)^n=\\sum_{k=0}^n \\frac{n!}{k!(n-k)!}a^kb^{n-k}"
In our case "a=-1x, b= 2y, n=16, k=3,n-k=13."
Therefore, the coefficient of "x^3 y^{13}" is
"\\frac{16!}{3!13!}(-1)^32^{13}=-\\frac{16\\cdot 15\\cdot 14\\cdot 13!}{3!13!}2^{13}=-\\frac{16\\cdot 15\\cdot 14\\cdot }{6}2^{13}="
"=-8\\cdot 5\\cdot 14\\cdot 2^{13}=-5\\cdot 7\\cdot 2^{17}=-4,587,520"
Comments
Leave a comment